DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF KANSAS
 MIDTERM MATH 765-Fall 2010

Your Name:

1 (50)

2 (50)

3
(75) \qquad

4 \qquad

BONUS
(50) \qquad

Total
(250) \qquad
(1) (50 points) Show that

$$
1^{3}+2^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

(2) (50 points) Show that the function $f(x)=\sin (1 / x)$ is continuous, but not uniformly continuous on ($0,2 \pi$].
(3) (75 points)

Let $a_{0}=1, a_{2}=2$. Prove that the sequence defined by

$$
a_{n+2}=\frac{a_{n}+a_{n+1}}{2}, n \geq 0
$$

is convergent.
(4) (75 points) Let A be a non-empty subset of \mathbf{R}^{1}. Define the function

$$
f_{A}(x):=\inf \{|x-a|: a \in A\} .
$$

Prove that f_{A} is uniformly continuous on \mathbf{R}^{1}.
(5) (Bonus problem 50 points) NO PARTIAL CREDIT ON THE BONUS PROBLEM, I.E. ONLY FULL CREDIT OR NO CREDIT.
Let x_{n} be a sequence of real numbers. Assuming that

$$
\lim _{n}\left(2 x_{n+1}-x_{n}\right)=x
$$

show that $\lim _{n} x_{n}=x$.

