DEPARTMENT OF MATHEMATICS UNIVERSITY OF KANSAS MIDTERM MATH 765 - Fall 2007

Your Name: _____

1	(75)	
2	(75)	
3	(75)	
4	(75)	
BONUS	(50)	
Total	(300)	

(1) Let $x_0 \ge 2$ and

$$x_{n+1} = 1 + \sqrt{x_n - 1}.$$

Show that the sequence $\{x_n\}$ converges and compute its limit. **Hint:** First, show by induction that $x_n \ge 2$ and $x_{n+1} \le x_n$. (2) Let $\{x_n\}$ be a Cauchy sequence. Assume that a given subsequence $\{x_{n_k}\}$ is convergent and $\lim_{k\to\infty} x_{n_k} = a$. Show that $\{x_n\}$ itself is convergent and $\lim_{n\to\infty} x_n = a$

(3) Let $f(x), g(x), h(x) : (a, b) \to \mathbf{R}^1$ be three functions, so that

$$f(x) \le g(x) \le h(x).$$

Assume f(x), h(x) are continuous at a point $c \in (a, b)$ and f(c) = g(c) = h(c). Prove that g is continuous at c as well. (4) For which values of $\alpha > 0$ is the function

$$f_{\alpha}(x) = \begin{cases} |x|^{\alpha} \sin(1/x) & x \neq 0\\ 0 & x = 0 \end{cases}$$

differentiable?

(5) (Bonus problem 50 points) NO PARTIAL CREDIT ON THE BONUS PROBLEM, I.E. ONLY FULL CREDIT OR NO CREDIT. Is the function $f(x) = \ln^2(x) : (1, \infty) \to \mathbf{R}^1$ uniformly continuous? Justify

your answer.

6