DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF KANSAS
 MIDTERM MATH 765-Fall 2007

Your Name: \qquad

1
(75) \qquad
(75) \qquad

3
(75) \qquad

4
(75) \qquad

BONUS
(50) \qquad

Total
(300)
(1) Let $x_{0}: \geq 2$ and

$$
x_{n+1}=1+\sqrt{x_{n}-1} .
$$

Show that the sequence $\left\{x_{n}\right\}$ converges and compute its limit.
Hint: First, show by induction that $x_{n} \geq 2$ and $x_{n+1} \leq x_{n}$.
(2) Let $\left\{x_{n}\right\}$ be a Cauchy sequence. Assume that a given subsequence $\left\{x_{n_{k}}\right\}$ is convergent and $\lim _{k \rightarrow \infty} x_{n_{k}}=a$. Show that $\left\{x_{n}\right\}$ itself is convergent and $\lim _{n \rightarrow \infty} x_{n}=a$
(3) Let $f(x), g(x), h(x):(a, b) \rightarrow \mathbf{R}^{1}$ be three functions, so that

$$
f(x) \leq g(x) \leq h(x)
$$

Assume $f(x), h(x)$ are continuous at a point $c \in(a, b)$ and $f(c)=g(c)=h(c)$.
Prove that g is continuous at c as well.
(4) For which values of $\alpha>0$ is the function

$$
f_{\alpha}(x)=\left\{\begin{array}{cc}
|x|^{\alpha} \sin (1 / x) & x \neq 0 \\
0 & x=0
\end{array}\right.
$$

differentiable?
(5) (Bonus problem 50 points) NO PARTIAL CREDIT ON THE BONUS PROBLEM, I.E. ONLY FULL CREDIT OR NO CREDIT.

Is the function $f(x)=\ln ^{2}(x):(1, \infty) \rightarrow \mathbf{R}^{1}$ uniformly continuous? Justify your answer.

