
TRANSVERSE INSTABILITY FOR PERIODIC WAVES OF KP-I AND
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Abstract. We consider the quadratic and cubic KP - I and NLS models in 1+2 dimensions with
periodic boundary conditions. We show that the spatially periodic travelling waves (with period
K) in the form u(t, x, y) = ϕ(x− ct) are spectrally and linearly unstable, when the perturbations
are taken to be with the same period. This strong instability implies other instabilities considered
recently - for example with respect to perturbations with periods nK, n = 2, 3, . . . or bounded
perturbations.

1. Introduction and Statements of main results

The existence and stability properties of special solutions of nonlinear differential equations
is an important question both from theoretical and practical point of view. Many equations
describing wave motion typically feature traveling wave solutions. The problem of the orbital
stability of solitary waves for nonlinear dispersive equations goes back to the works of Benjamin
[8] and Bona [9]. Another approach is to linearize the equation around the solitary wave and
look for linear stability based on the spectrum of the linear solution operator. Extending the
ODE ideas to partial differential equations has introduced a number of new issues. In infinite
dimensions, the relation between the linearization and the full nonlinear equations is far more
complicated. Another nontrivial issue arises at the linear level, since all of the known proofs for
the existence of invariant manifolds are based upon the use of the solution group (or semigroup)
generated by the linearization. However, in any actual problem, the information available will,
at best, be of the spectrum of the infinitesimal generator, that is, the linearized equation and not
its solution operator. Relating the spectrum of the infinitesimal generator to that of the group
is a spectral mapping problem that is often non-trivial. All of these three problems - spectral
stability, linear stability and nonlinear stability, have been extensively studied for solitary wave
solutions.

While the existence and stability of such solutions on the whole space case has been well-
studied, the questions about existence and stability of spatially periodic traveling waves have not
received much attention until recently. One of the first results on stability of periodic solutions of
the Korteweg-de Vries(KdV) equation was obtained by McKean [27]. Based on the integrability
of the KdV equation the stability of all periodic finite-genus solutions has been established.
Recently Angulo, Bona and Scialom [4] investigated the orbital stability of cnoidal waves for the
KdV equation with respect to perturbations of the same period. The linear stability/instability
of some of these solutions with respect to different types of perturbations has been developed
in the last couple of years, see for example [19], [11] and [10]. Other new explicit formulae
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for periodic traveling waves of dnoidal type together with their stability have been obtained in
[3, 5, 15, 16, 17].

An interesting aspect of the theory is when one considers the one-dimensional waves as solutions
in two-dimensional models. One generally refers to this as the question for transverse stability of
such waves. The transverse stability of traveling waves is associated with a class of perturbations
traveling transversely to the direction of the basic traveling wave.

The problem of transverse stability/instability of solitary waves goes back to a work by
Kadomtsev and Petviashvili [25] for KdV solitary waves. To this end, we introduce the equation
(ut+∂xxxu+∂x(f(u)))x−∂yyu = 0, referred to as KP-I and (ut+∂xxxu+∂x(f(u)))x+∂yyu = 0,
which is usually called KP-II. It turns out that solitary waves are transversely stable in the case
of KP-I and transversely unstable in the case of KP-II.

Recently, Rousset and Tzvetkov, [30, 31] provided general criterium for transverse instability
for traveling waves of Hamiltonian partial differential equations, which was then applied to various
examples. Johnson and Zumbrun [24] investigated the stability of periodic traveling waves of the
generalized KdV equation to two dimensional perturbations, which are nonperiodic (bounded)
in the generalized KP equation and have long wavelength in the transverse direction. By an-
alyzing high and low frequency limits of the appropriate periodic Evans function they derived
an instability criterion for the transverse instability. This criteria was then applied to the KdV
and modified KdV equations. The authors proved that the periodic traveling waves of the KdV
equation are unstable to long wavelength transverse perturbations under the KP-I flow and that
cnoidal, and dnoidal traveling waves for modified KdV equation are transversely unstable to long
wavelength perturbations in KP-II and KP-I respectively. Haragus [18] considered the transverse
spectral stability of small periodic traveling wave solutions of the KdV equation with respect to
perturbations in KP-I and KP-II which are either periodic in the direction of perturbation or
nonperiodic (localized or bounded) and have long wavelength in the transverse direction.

In this paper, we prove transverse instability of certain periodic solutions of the Kadomtsev-
Petviashvili-I equation and the nonlinear Schrödinger equation iut − (uxx + uyy)− f(|u|2)u = 0.
More precisely, we consider periodic traveling waves of the KdV and mKdV equation, which in
turn also solve the KP-I equation, while our second example concerns spatially periodic standing
waves of the non-linear Schrödinger equation (NLS). Before we continue with the specifics of our
results, we outline the general scheme and we give some definitions.

In this paper we only deal with the stability information provided by the linearized equation1.
Suppose that the linearized equation is in the form of an evolution equation

(1) vt = Av.

We use the following definition of spectral and linear stability

Definition 1. Assume that A = A(ϕ) generates a C0 semigroup on a Banach space X. We say
that the solution ϕ with linearized problem (1) is spectrally stable, if σ(A) ⊂ {λ : <λ ≤ 0}.

We say that the the solution ϕ with linearized problem (1) is linearly stable, if the growth bound
for the semigroup etA is non-positive. Equivalently, we require that every solution of (1) with
v(0) ∈ X has the property

lim
t→∞

e−δt‖v(t, ·)‖ = 0

for every δ > 0.

1i.e. we will not consider the full non-linear equation satisfied by v, which would of course amount to non-linear
stability/instability results.



TRANSVERSE INSTABILITY FOR PERIODIC WAVES 3

Remarks: We recall that by the spectral mapping theorem for point spectrum σp.p.(etA)\{0} =
etσp.p.(A). There is however only the inclusion σess(etA) \ {0} ⊇ etσess(A), which is the reason that
one cannot, in general (and in the absence of the so-called spectral mapping theorem), deduce
linear stability from spectral stability. In fact, due to the spectral inclusions above, linear stability
implies spectral stability, but in general the converse is false.

However, in the cases considered in this paper the spectrum consists entirely of eigenvalues
and the two notions are equivalent (since there is a spectral mapping theorem for eigenvalues, as
indicated above). Thus, we will concentrate on the spectral stability from now on.

1.1. KP - I equation. Consider the spatially periodic KP - I equation

(2)
{

(ut + ∂xxxu+ ∂x(f(u)))x − ∂yyu = 0, (t, x, y) ∈ R1
+ × [0,K1]× [0,K2]

u(t, x+K1, y) = u(t, x, y);u(t, x, y +K2) = u(t, x, y)

where f is smooth function2. It is known that solutions exists, at least locally, when the data is
in the product Sobolev spaces f ∈ H3,3([0,K1]× [0,K2]), see for example [22].

In this paper, we will be interested in the stability properties of a class of special solutions,
namely the periodic traveling waves solution of the generalized KdV equation. That is, we look
for solutions in the form v(t, x) = ϕ(x− ct), ϕ(x+K1) = ϕ(x), so that

vt + ∂xxxv + ∂x(f(v)) = 0, x ∈ [0,K1].

Clearly then u(t, x, y) := ϕ(x − ct) is a solution of the KP - I equation (2). We construct these
solutions ϕc explicitly in Section 2 below. Periodic travelling-wave solution are determined from
Newton’s equation which we will write below in the form ϕ′2 = U(ϕ). Therefore by using the
well-known properties of the phase portrait of Newton’s equation in the (ϕ,ϕ′)-plane, one can
establish that under fairly general conditions, that there exists a family of periodic solutions
(elliptic solutions) ϕ(y) = ϕ(c, ϕ0; y) and ϕ0 = minϕ. Moreover, if T = T (c, ϕ0) (in particular,
their period turns out to depend on the speed parameter c and an elliptic modulus κ) is the
minimal (sometimes called fundamental) period of ϕ, then ϕ has exactly one local minimum and
one local maximum in [0, T ). Therefore ϕ′ has just two zeroes in each semi-open interval of length
T . By Floquet theory, this means that ϕ′ is either the second or the third eigenfunction of the
periodic eigenvalue problem.

In order to explain the instability results, we need to linearize the equation (2) about the
periodic traveling wave solution. Note that the perturbations that we work with are periodic
with the same period as the traveling wave and they have mean value zero.

More precisely we write an ansatz in the form u(t, x, y) = ϕ(x− ct) + v(t, x− ct, y), which we
plug in (2). After ignoring all nonlinear in v terms, we get the following linear equation for v

(3) (vt + vxxx − cv + (f ′(ϕ)v)x)x − ∂yyv = 0.

Since the function v has the mean-zero property in x (i.e.
∫K1

0 v(t, x, y)dx = 0), then one may
invert the operator ∂x (by defining (∂−1

x f)(x) :=
∫ x
0 f(y)dy) and thus recast (3) in the evolution

equation form

(4) vt = ∂x(−∂2
x + c− f ′(ϕ))v + ∂−1

x ∂yyv

The question for stability/instability of traveling wave solutions of the KP - I equation has
attracted a lot of attention in the last few years (see [24], [18]).

2We only consider the cases f(u) = u2,±u3, but other choices certainly make sense mathematically.



4 SEVDZHAN HAKKAEV, MILENA STANISLAVOVA, AND ATANAS STEFANOV

As we have indicated above, we restrict our attention to spectral considerations for the gener-
ator. In order to establish instability, we seek solutions in the form

v(t, x, y) = eσteikyV (x),

where σ ∈ C, k ∈ R and V (x) is periodic function with same period as the periodic traveling
wave solution ϕ(x). Clearly, such solutions will be also periodic in the y variable, with period
K2 = 2π/k. Thus, if we manage to show existence of such V = V (σ, k) with some σ > 0, we will
have shown transverse spectral instability of the traveling wave solution ϕ(x).

We further specialize V in the form V = ∂xU . Plugging in (4) yields the equation

−σ∂xU = (−∂x(−∂xx + c− f ′(ϕ))∂x + k2)U.

This eigenvalue problem is therefore in the form

(5) σA(k)U = L(k)U,

with
A(k) = −∂x, L(k) = −∂x(−∂xx + c− f ′(ϕ))∂x + k2.

where L(k), A(k) are operators which depend on the real parameter k on some Hilbert space H.

1.2. The Nonlinear Schrödinger Equation. Another object of investigation will be the spa-
cially periodic solutions of the Nonlinear Schrödinger Equation (NLS).

(6)
{
iut − (uxx + uyy)− f(|u|2)u = 0, (t, x, y) ∈ R1

+ × [0,K1]× [0,K2]
u(t, x+K1, y) = u(t, x, y); u(t, x, y +K2) = u(t, x, y).

where f is a smooth function. We are looking for standing waves in the form u(t, x) = e−iωtϕ(x),
where ϕ is a real-valued function with period K1. This results in the ordinary differential equation

(7) ωϕ− ϕ′′ − f(ϕ2)ϕ = 0.

After multiplication with ϕ′ and integration we get a form of Newton’s equation, which we resolve
below, see (40). We now derive the linearized equation for small perturbation of the wave e−iωtϕ.
Write the ansatz u = e−iωt(ϕ+ v(t, x, y)). For the nonlinear term, we have

f(|u|2) = f(|ϕ+ v|2) = f(ϕ2 + 2ϕ<v + |v|2) = f(ϕ2) + 2f ′(ϕ2)ϕ<v +O(v2).

We get, after disregarding O(v2) terms and taking into account (7),

ivt + ωv − (vxx + vyy)− f(ϕ2)v − 2f ′(ϕ2)ϕ2<v = 0.

We are looking for unstable solutions in the form v(t, x, y) = eσt cos(ky)V (x), where V is a
complex-valued function. We obtain

iσV + ωV − V ′′ + k2V − f(ϕ2)V − 2f ′(ϕ2)ϕ2<V = 0

Let V = v1 + iv2, where v1, v2 are real-valued functions. This gives the following system for v1, v2
σv1 − v′′2 + ωv2 + k2v2 − f(ϕ2)v2 = 0
−σv2 − v′′1 + ωv1 + k2v1 − f(ϕ2)v1 − 2f ′(ϕ2)ϕ2v1 = 0.

Denote

L+ = −∂2
x + ω − f(ϕ2),(8)

L− = −∂2
x + ω − f(ϕ2)− 2f ′(ϕ2)ϕ2.

This allows us to write the linearized problem as follows

(9) σ

(
v1
v2

)
+
(

0 L+ + k2

−(L− + k2) 0

)(
v1
v2

)
= 0.
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Let J =
(

0 1
−1 0

)
and

(
v1
v2

)
= J

(
z1
z2

)
. Note that J∗ = J−1 = −J . In terms of z1, z2, we

have the equation

σJ

(
z1
z2

)
= −J

(
L− + k2 0

0 L+ + k2

)
J

(
z1
z2

)
Thus, we have managed to recast the problem in the form (5), this time with

(10) A(k) = σJ ; L(k) = −J
(
L− + k2 0

0 L+ + k2

)
J = −J

(
L− 0
0 L+

)
J + k2Id

Remark: We would like to give the important case f(z) =
√
z some more consideration, due to

the fact that the function
√
z fails to be differentiable at zero. Nevertheless, we still have√

|ϕ+ v| = ϕ+ <v + o(v),

and we still obtain the formula

L+ = −∂2
x + ω − ϕ,

L− = −∂2
x + ω − 2ϕ,

as we would, if we were to use the derivative of the function f(z) in the generic definition of L±
above. The difference of course is in the fact that the remainder term is only o(v) instead of
O(v2), but this of course is irrelevant for the linear theory that we develop here.

1.3. Main Results. We investigate the stability of the elliptic solutions of the generalized KdV
equation under the flow of the KP-I equation. These are solutions expressible in terms of the
standard Jacobbi elliptic functions cn, dn and sn referred to as cnoidal, dnoidal and snoidal
solutions of the equation respectively.

Our first result concerns the transverse instability of the cnoidal solutions of the KP - I equation.

Theorem 1. (transverse instability for cnoidal solutions of KP - I)
The KP - I equation (i.e. (2) with f(u) = u2

2 ) supports cnoidal solutions given by (24) below.
For every cnoidal solution there exists a period K2, such that the cnoidal wave is spectrally and
linearly unstable for all values of the parameters κ ∈ (0, 1) and T given by (25) with respect to
perturbation of the same period with mean value zero.

Next, we state a result regarding transverse instability of the dnoidal solutions of the modified
KP - I equation.

Theorem 2. (transverse instability for dnoidal solutions of modified KP - I)
Consider the modified KP - I equation, that is (2) with f(u) = u3. Then, there exists a period
K2 depending on the particular dnoidal solution, so that the dnoidal solutions described by (33)
below are spectrally and linearly unstable for all values of the parameters κ ∈ (0, 1) and the
corresponding T with respect to perturbations of the same period with mean value zero.

Finally, the following result shows transverse instability for standing waves of the quadratic
and cubic NLS. That is, we consider (6) with f(z) =

√
z and f(z) = z.

Theorem 3. (transverse instability for standing wave solutions of NLS)
The quadratic (focussing) Schrödinger equation3 (6) admits cnoidal solutions in the form (42).

There exists K2, depending on the specific solution, so that these solutions are spectrally and
linearly unstable for all values of the parameter κ ∈ (0, 1) with respect to perturbations of the
same period with mean value zero. The cubic (focussing) Schrödinger equation4 (6) supports

3i.e. f(z) =
√
z

4i.e. f(z) = z
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dnoidal solutions in the form (47). There exists K2, depending on the specific solution, so that
these solutions are spectrally and linearly unstable for all values of the parameter κ ∈ (0, 1) with
respect to perturbations of the same period with mean value zero.

Remarks:
• As a consequence of these three theorems, one may deduce spectral instability, when the

perturbations are taken to be periodic (with period equal to integer times the period of
the wave) or bounded functions.
• Our method for showing transverse instability fails for periodic snoidal waves of the

defocussing modified KP - I equation, see Chapter 5. Beyond the technical issues, which
prevents the relevant inequality (38) from being satisfied, it would be interesting to further
investigate the transverse stability/instability of these interesting waves.

1.4. General instability criteria. In our proofs, we use the following sufficient condition for
instability.

Theorem 4. Assume that the operator L(k) satisfies5

(1) there exists k0 > 0, so that dim Ker[L(k0)] = 1, say Ker[L(k0)] = span{ϕ}.
(2) L′(k0)ϕ 6= 0.

Then, the equation (5) has a solution U for some k, sufficiently close to k0 and for some suf-
ficiently small σ > 0. In fact, there exists a continuous scalar function k(σ) : k(0) = k0 and a
continuous H-valued function U(σ) : U(0) = ϕ, so that

σA(k(σ))U(σ) = L(k(σ))U(σ),

for all 0 < σ << 1.

Note: This is a variant of a theorem used by Groves-Haragus and Sun, [14]. The interested
reader should also explore the simple exposition in [32], where several examples about transverse
instability on the whole space are worked out in detail using the same techniques. In our version
of the proof, we only require that L′(k0)ϕ 6= 0, which is trivially satisfied for the equations
considered.

Proof. We quickly indicate the main ideas of the proof.
Let U = ϕ+ V , with

V ∈ ϕ⊥ = {V ∈ H, (V, ϕ) = 0}.
Consider the equation G(V, k, σ) = 0, with σ > 0 and

G(V, k, σ) = L(k)ϕ+ L(k)V − σA(k)ϕ− σA(k)V.

We have
〈DV,k(0, k0, 0), [ω, µ]〉 = µL′(k0)ϕ+ L(k0)ω

and DV,k(0, k0, 0) is a bijection from ϕ⊥×R to H. From the implicit function theorem follows that
for σ in a neighborhood of zero there exists k(σ) and V (σ) such that G(V (σ), k(σ), σ) = 0. �

Clearly, in view of Theorem 4 and the spectral problem (5), we will have proved Theorem 1
and Theorem 2, provided we can verify the conditions (1), (2) of Theorem 4 for the operator

L(k) = −∂xL∂x + k2 = −∂x(−∂xx + c− f ′(ϕ))∂x + k2.

5Hereafter, we use the notation L′(k) := d
dk
L(k).
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Similarly, for Theorem 3, due to the representation (10), it suffices to verify conditions (1), (2) of
Theorem 4 for the operator

L(k) = J −1LJ + k2 = J −1

(
L− 0
0 L+

)
J + k2.

This clearly necessitates a somewhat detailed study of the spectral picture for the operators
L,L±. Luckily, after one constructs the traveling/standing waves for our models in terms of
elliptic functions, we will be able to obtain some information about the spectra of L and L±,
which will allow us to check condition (1) in Theorem 4.

The paper is organized as follows. In Section 2, we construct the eigenfunctions. In Section 3,
we describe the structure of the first few eigenvalues, together with the associated eigenfunctions
for L and L±. In section 4, we give the proof of Theorem 1 by verifying conditions (1), (2). This
requires some spectral theory, together with the specific spectral information for L,L±, obtained
in Section 2. In section 5, we show that an identical approach for the defocusing modifed KP - I
equation fails to give transverse instability. Thus, an interesting question is left open, namely -
are the snoidal solutions to this problem transverse unstable?
Acknowledgement: We would like to thank the referee for the careful reading of the manuscript
and the numerous suggestions and references, which improved the paper tremendously.

2. Construction of periodic traveling waves

We are looking for a traveling-wave solution for the equation

(11) ut + (f(u))x + uxxx = 0

of the form u(x, t) = φ(x − ct). We assume that φ is smooth and bounded in R. The following
two cases appear:

(i) φ′ 6= 0 in R and φ− < φ < φ+ (corresponding to kink-wave solution);

(ii) φ′(ξ) = 0 for some ξ ∈ R. Denote φ0 = φ(ξ), φ2 = φ′′(ξ).

Below we will deal with the second case. Replacing in (11) we get

(12) −cφ′ + (f(φ))′ + φ′′′ = 0.

Integrating (12) twice, one obtains

(13) −cφ+ f(φ) + φ′′ = a

(14)
ϕ′2

2
= b+ aφ+

c

2
φ2 − F (φ), F (φ) =

∫ φ

0
f(s)ds

with some constants a, b. In case (ii), one has respectively

a = f(φ0)− cφ0 + φ2,
b = F (φ0)− 1

2cφ
2
0 − aφ0 = F (φ0)− 1

2cφ
2
0 − (−cφ0 + f(φ0) + φ2)φ0.

Next we are going to look for periodic travelling-wave solutions φ. Consider in the plane
(X,Y ) = (φ, φ′) the Hamiltonian system

(15) Ẋ = Y = HY ,

Ẏ = −f(X) + cX + a = −HX ,
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with a Hamiltonian function

H(X,Y ) =
Y 2

2
+ F (X)− v

2
X2 − aX.

Then (14) becomes H(φ, φ′) = b and the curve s→ (φ(s− s0), φ′(s− s0)) determined by (14) lies
on the energy level H = b of the Hamiltonian H(X,Y ). Within the analytical class, system (15)
has periodic solutions if and only if it has a center. Each center is surrounded by a continuous
band of periodic trajectories (called period annulus) which terminates at a certain separatrix
contour on the Poincaré sphere. The critical points of center type of (15) are given by the critical
points on Y = 0 having a negative Hessian. These are the points (X0, 0) where:

(16) a+ cX0 − f(X0) = 0, c− f ′(X0) < 0.

(For simplicity, we will not consider here the case of a degenerate center when the Hessian becomes
zero.)

The above considerations lead us to the following statement.

Proposition 1. Let a and c be constants such that conditions (16) are satisfied for some X0 ∈ R.
Then there is an open interval ∆ containing X0 such that:

(i) For any φ0 ∈ ∆, φ0 < X0, the solution of (11) satisfying

φ(ξ) = φ0, φ′(ξ) = 0, φ′′(ξ) = a+ cφ0 − f(φ0),

is periodic.
(ii) If φ1 ∈ ∆, φ1 > X0 is the nearest to X0 solution of H(X, 0) = H(φ0, 0), then φ0 ≤ φ ≤ φ1.

(iii) If T is the minimal period of φ, then in each interval [s, s + T ), the function φ has just
one minimum and one maximum (φ0 and φ1, respectively) and it is strictly monotone
elsewhere.

Denote

U(s) = 2b+ 2as+ cs2 − 2F (s) = 2F (φ0)− cφ2
0 − 2aφ0 + 2as+ cs2 − 2F (s).

Then for φ0 ≤ φ ≤ φ1 one can rewrite (14) as φ′(σ) =
√
U(ϕ(σ)). Integrating the equation along

the interval [ξ, s] ⊂ [ξ, ξ + T/2] yields an implicit formula for the value of φ(s):

(17)
∫ φ(s)

φ0

dσ√
U(σ)

= s− ξ, s ∈ [ξ, ξ + T/2].

For s ∈ [ξ + T/2, ξ + T ] one has ϕ(s) = ϕ(T + 2ξ − s). We recall that the period function T of a
Hamiltonian flow generated by H0 ≡ 1

2Y
2 − 1

2U(X) = 0 is determined from

(18) T =
∫ T

0
dt =

∮
H0=0

dX

Y
= 2

∫ ϕ1

ϕ0

dX√
U(X)

.

This is in fact the derivative (with respect to the energy level) of the area surrounded by the
periodic trajectory through the point (φ0, 0) in the (X,Y ) = (φ, φ′)-plane.

Consider the continuous family of periodic traveling wave solutions {u = φ(x − ct)} of (11) and
(13) going through the points (φ, φ′) = (φ0, 0) where φ0 ∈ ∆−. For any φ0 ∈ ∆−, denote by
T = T (φ0) the corresponding period. One can see (e.g. by using formula (17) above) that the
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period function φ0 → T (φ0) is smooth. To check this, it suffices to perform a change of the
variable

(19) X =
φ1 − φ0

2
s+

φ1 + φ0

2
in the integral (17) and use that

(20) U(ϕ0) = U(ϕ1) = 0.

Conversely, taking c, a to satisfy the conditions of Proposition 1 and fixing T in a proper interval,
one can determine φ0 and φ1 as smooth functions of c, a so that the periodic solution φ given
by (17) will have a period T . The condition for this is the monotonicity of the period (for more
details see [26]).

3. Spectral properties of the operators L and L±
We first construct the spectral representation of the KdV equation

3.1. The operator L for KdV. Consider the Korteweg-de Vries equation

(21) ut + uux + uxxx = 0,

which is a particular case of (11) with f(u) = u2

2 . In this subsection we are interested of the
spectral properties of the operator L defined by the

(22) L = −∂2
x + c− φ.

Let us first mention that (15) reduces now to

X0 = c+
√
c2 + 2, ∆ =

(
c−

√
c2 + 2, c+ 2

√
c2 + 2

)
By the definition of a, b and U(s) one obtains

U(s) ≡ 1
3

(φ0 − s)[s2 + (φ0 − 3c)s− (2φ2
0 + 3cϕ0 − 6φ2)]

=
1
3

(s− φ0)(φ1 − s)(s+ φ1 + φ0 − 3c).

We note that the last equality is a consequence of Proposition 1, which implies that U(φ1) =
U(φ0) = 0. To obtain an explicit formula for the travelling wave φc, we substitute σ = φ0 + (φ1−
φ0)z2, z > 0 in order to express the above integral as an elliptic integral of the first kind in a
Legendre form. One obtains∫ Z(s)

0

dz√
(1− z2)(κ′2 − k2z2)

= α(s− ξ),

where

(23) Z(s) =

√
φc(s)− φ0

φ1 − φ0
, k2 =

φ1 − φ0

φ0 + 2φ1 − 3c
, κ2 + κ′2 = 1, α =

√
φ0 + 2φ1 − 3c

12
.

Thus we get the expression

(24) φc(s) = φ0 + (φ1 − φ0)cn2(α(s− ξ); k).

To calculate the period of φc, we use (3.7) and the same procedure as above. In this way we get

(25) T = 2
∫ ϕ1

ϕ0

dσ√
U(σ)

=
2
α

∫ 1

0

dz√
(1− z2)(1− k2z2)

=
2K(k)
α

.
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We return to the operator L defined by (22), where φc is determined by (24). Consider the
spectral problem

(26) Lψ = λψ,
ψ(0) = ψ(T ), ψ′(0) = ψ′(T ).

We will denote the operator just defined again by L. It is a self-adjoint operator acting on
L2
per[0, T ] with D(L) = H2([0, T ]). From Floquet theory applied to (26) it follows that its

spectrum is purely discrete, (see [3, 15, 26])

(27) λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 < . . .

where λ0 is always a simple eigenvalue. If ψn(x) is the eigenfunction corresponding to λn, then

(28) ψ0 has no zeroes in [0, T ];
ψ2n+1, ψ2n+2 have each just 2n+ 2 zeroes in [0, T ).

The following proposition, the proof of which we provide next, is also available in [4] and [23].

Proposition 2. The linear operator L defined by (26) has the following spectral properties:
(i) The first three eigenvalues of L are simple.

(ii) The second eigenvalue of L is λ1 = 0.

(iii) Remainder of the spectrum consists of discrete set of eigenvalues.

Proof. By (12), Lφ′c = 0, hence ψ = φ′c is an eigenfunction corresponding to zero eigenvalue.
By Proposition 1 (iii) φ′ has just two zeroes in [0, T ) and therefore by (28) either 0 = λ1 < λ2 or
λ1 < λ2 = 0 or λ1 = λ2 = 0. We are going to verify that only the first possibility 0 = λ1 < λ2

can occur. From the definition of k and α one obtains that

φ0 + 2φ1 − 3c = 12α2, φ1 − φ0 = 12k2α2.

Then using (24) we get

L = −∂2
x + c− φ0 − (φ1 − φ0)cn2(αx; k)

= −∂2
x + c− φ1 + (φ1 − φ0)sn2(αx; k)

= −∂2
x − α2[4k2 + 4− 12k2sn2(αx; k)]

= α2[−∂2
y − 4k2 − 4 + 12k2sn2(y; k)] ≡ α2Λ

where y = αx. The operator Λ is related to Hill’s equation with Lamé potential

Λw = − d2

dy2
w + [12k2sn2(y; k)− 4k2 − 4]w = 0

and its spectral properties in the interval [0, 2K(k)] are well known [4, 15]. The first three (simple)
eigenvalues and corresponding periodic eigenfunctions of Λ are

µ0 = k2 − 2− 2
√

1− k2 + 4k4 < 0,
ψ0(y) = dn(y; k)[1− (1 + 2k2 −

√
1− k2 + 4k4)sn2(y; k)] > 0,

µ1 = 0,
ψ1(y) = dn(y; k)sn(y; k)cn(y; k) = 1

2(d/dy)sn2(y; k),

µ2 = k2 − 2 + 2
√

1− k2 + 4k4 > 0,
ψ2(y) = dn(y; k)[1− (1 + 2k2 +

√
1− k2 + 4k4)sn2(y; k)].
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As the eigenvalues of L and Λ are related by λn = α2µn we conclude that the first three eigenvalues
of (26) are simple and moreover λ0 < 0, λ1 = 0, λ2 > 0. The corresponding eigenfunctions are
ψ0(αx), ψ1(αx) = const.φ′c(x) and ψ2(αx). 2

3.2. The operator LmKdV . Consider the modified Korteweg-de Vries equation

(29) ut + 3u2ux + uxxx = 0.

Traveling wave solutions in this case satisfy the equation

(30) −cφ′ + 3φ2φ′ + φ′′′ = 0.

Integrating yields

(31) φ′′ = a+ cφ− φ3.

We consider the ”symmetric” case a = 0 only. Integrating once again, we get

(32) φ′2 = b+ cφ2 − φ4

2
.

Hence the periodic solutions are given by the periodic trajectories H(φ, φ′) = b of the Hamil-
tonian vector field dH = 0 where

H(x, y) = y2 +
x4

4
− cx

2

2
.

If c > 0, this is usually called Duffing oscillator. Then there are two possibilities to produce
periodic solutions.

1.1) (outer case): for any b > 0 the orbit defined by H(φ, φ′) = b is periodic and oscillates outside
and around the eight-shaped loop H(φ, φ′) = 0 through the saddle at the origin.

1.2) (left and right cases): for any b ∈ (−1
2c

2, 0) there are two periodic orbits defined by H(φ, φ′) =
b (the left and right ones). These are located inside the eight-shaped loop and oscillate around
the centers at (∓

√
c, 0), respectively.

We will consider exactly the left and right cases of Duffing oscillator.

Duffing oscillator

-2 -1 0 1 2

-0.5

0.0

0.5

Figure 1. The picture shows different periodic orbits of Duffing oscillator. We
study the left and right periodic orbits inside the figure eight loop.
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In the left and the right cases, let us denote by φ1 > φ0 > 0 the positive roots of the quartic
equation φ4

2 − cφ2 − b = 0. Then, up to a translation, we obtain the corresponding explicit
formulas

(33) φ(z) = ∓φ1dn(αz; k), k2 =
φ2

1 − φ2
0

φ2
1

=
2φ2

1 − 2c
φ2

1

, α =
φ1√

2
, T =

2K(k)
α

.

Thus

(34) L = −∂2
x + c− 3φ2.

We use (33) to rewrite the operator L in an appropriate form. From the expression for φ(x) from
(33) and the relations between the elliptic functions sn(x), cn(x) and dn(x), we obtain

L = α2[−∂2
y + 6k2sn2(y)− 4− k2]

where y = αx.
It is well-known that the first five eigenvalues of Λ = −∂2

y+6k2sn2(y, k), with periodic boundary
conditions on [0, 4K(k)], where K(k) is the complete elliptic integral of the first kind, are simple.
These eigenvalues, with their corresponding eigenfunctions are as follows (see [3, 15, 26]):

ν0 = 2 + 2k2 − 2
√

1− k2 + k4, ψ0(y) = 1− (1 + k2 −
√

1− k2 + k4)sn2(y, k),
ν1 = 1 + k2, ψ1(y) = cn(y, k)dn(y, k) = sn′(y, k),
ν2 = 1 + 4k2, ψ2(y) = sn(y, k)dn(y, k) = −cn′(y, k),
ν3 = 4 + k2, ψ3(y) = sn(y, k)cn(y, k) = −k−2dn′(y, k),

ν4 = 2 + 2k2 + 2
√

1− k2 + k4, ψ4(y) = 1− (1 + k2 +
√

1− k2 + k4)sn2(y, k).

It follows that the first three eigenvalues of the operator L, equipped with periodic boundary
condition on [0, 2K(k)] (that is, in the case of left and right family), are simple and λ0 = α2(ν0−
ν3) < 0, λ1 = α2(ν3 − ν3) = 0, λ2 = α2(ν4 − ν3) > 0. The corresponding eigenfunctions are
χ0 = ψ0(αx), χ1 = φ′(x), χ2 = ψ4(αx).

Thus, we have proved the following proposition (see also [3] and [12] for different proofs).

Proposition 3. The linear operator L defined by (34) has the following spectral properties:
(i) The first three eigenvalues of L are simple.

(ii) The second eigenvalue of L is λ1 = 0, which is simple.

(iii) The rest of the spectrum consists of a discrete set of eigenvalues, which are strictly positive.

4. Proof of Theorem 1

We first consider the cases of the KdV and the modified KdV equations.

4.1. The KdV and modified KdV equations. We need to check the assumptions of Theorem
4 for the operator L(k) = −∂xL∂x + k2, where L is either the operator associated to the KdV
equation, constructed in Section 3.1 or the operator associated to the mKdV equation, constructed
in Section 3.2.

Clearly, L(0) = −∂xL∂x is bounded from below self-adjoint operator, so that its spectrum
consists of eigenvalues with finite multiplicities

σ(L(0)) = λ0(L(0)) ≤ λ1(L(0)) ≤ . . .
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Thus, one may apply the Courant principle for the first eigenvalue. We have

λ1(L(0)) = sup
z 6=0

inf
u⊥z

〈L(0)u, u〉
‖u‖2

.

and as a consequence the infimum in u may be taken only on functions with mean value zero.
Taking z = ψ′0 in the formula above and the identity 〈L(0)u, u〉 = 〈−∂xL∂xu, u〉 = 〈Lu′, u′〉 allows
us to write

λ1(L(0)) ≥ inf
u⊥ψ′0

〈Lu′, u′〉
‖u‖2

= inf
u′⊥ψ0

〈Lu′, u′〉
‖u‖2

since 〈u′, ψ0〉 = −〈u, ψ′0〉 = 0. Now, observe that since in both LKdV and LmKdV we have that
there is only a single and simple negative eigenvalue, it follows that L|{ψ0}⊥ ≥ 0, i.e. 〈Lv, v〉 ≥ 0,
whenever v ⊥ ψ0. In particular, if u′ ⊥ ψ0,

〈Lu′, u′〉
‖u‖2

≥ 0.

Thus,

λ1(L(0)) ≥ inf
u′⊥ψ0

〈Lu′, u′〉
‖u‖2

≥ 0.

Thus λ1(L(0)) ≥ 0. On the other hand, we have that 0 is an eigenvalue for L(0), because
L(0)φc = −∂xL∂x[φc] = −∂xLφ′c = 0.

We will now show that there is a negative eigenvalue for LKdV (0) and LmKdV (0). We claim
that this will be enough for the proof of Theorem 1.

Indeed, if we succeed in showing λ0(L(0)) < 0, and since we have established 0 ∈ σ(L(0)) and
λ1(L(0)) ≥ 0, it follows that λ1(L(0)) = 0. In particular λ0(L(0)) is a simple eigenvalue, hence
verifying the first hypothesis of Theorem 4 with k2

0 := −λ0(L(0)). Moreover, L′(k0) = 2k0Id and
hence, the second condition of Theorem 4 is trivially satisfied as well.

Thus, it suffices to show

(35) λ0(L(0)) = inf
u:‖u‖=1

〈Lu′, u′〉 < 0

Heuristically we need a function which has mean value zero and mostly projects along the
bottom of the spectrum of L. Clearly, ψ0 = P<0(L), but

∫
ψ0 6= 0. Thus we need to have a

component of u′ projecting along the next best thing to ensure
∫
u′ = 0. But

∫
ψ1 = 0 and ψ1

will not help, so we need to use ψ2. Hence, we will construct u′ := t0ψ0− t2ψ2 for some coefficient
t0, t2 to be found momentarily. Clearly, we first need to ensure the mean-value zero property

(36) t0

∫ T

0
ψ0(y)dy − t2

∫ T

0
ψ2(y)dy = 0

to ensure that such a periodic function u exists6. Since both
∫ T
0 ψ0(y)dy 6= 0,

∫ T
0 ψ2(y)dy 6= 0, we

conclude that we may select t0, t2 6= 0 and

(37)
t0
t2

=

∫ T
0 ψ2(y)dy∫ T
0 ψ0(y)dy

.

6in which case, we simply define the non-trivial function u(x) :=
R x
0

(t0ψ0(y)− t2ψ2(y))dy, which in view of (36)

is defined up to a multiplicative constant.
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Next, we compute (using (37))

〈Lu′, u′〉 = 〈L(t0ψ0 − t2ψ2), (t0ψ0 − t2ψ2)〉 = t20‖ψ0‖2L2λ0(L) + t22‖ψ2‖2L2λ2(L) =

= t22(
∫ T

0
ψ2(y)dy)2

(
‖ψ0‖2λ0(L)

(
∫ T
0 ψ0(y)dy)2

+
‖ψ2‖2λ2(L)

(
∫ T
0 ψ2(y)dy)2

)
.

Thus, it remains to check that under the conditions in Theorem 4, the following inequality holds
true

(38)
‖ψ0‖2λ0(L)

(
∫ T
0 ψ0(y)dy)2

+
‖ψ2‖2λ2(L)

(
∫ T
0 ψ2(y)dy)2

< 0.

Thus, we have reduced the proof of Theorem 1 and Theorem 2 to checking (38) for LKdV and
LmKdV respectively. We point out once again that (38) is merely sufficient condition for the
validity of (35).

4.1.1. Proof of (38) for LKdV . In the case of Korteweg-de Vries equation using (23) and identities

sn2(x) = 1
κ2 (1− dn2(x))∫K

0 dn(x)dx = π
2∫K

0 dn3(x)dx = π(2−κ2)
4∫K

0 dn2(x)sn2(x)dx = (2κ2−1)E(κ)+(1−κ2)K(κ)
3κ2∫K

0 dn2(x)sn4(x)dx = (8κ4−3κ2−2)E(κ)+2(1+κ2−2κ4)K(κ)
15κ4

we get7 ∫ T
0 ψ0(αx)dx = π

α

[
2−κ2

2κ2 (1 + 2κ2 −
√

1− κ2 + 4κ4) +
√

1−κ2+4κ4−1−κ2

κ2

]
∫ T
0 ψ2

0(αx)dx = 2
α

(
E(κ) + 2(−1−2κ2+

√
1−κ2+4κ4)((−1+2κ2)E(κ)−(−1+κ2)K(κ))

3κ2

+ (−1−2κ2+
√

1−κ2+4κ4)2((−2−3κ2+8κ4)E(κ)+2(1+κ2−2κ4)K(κ))
15κ4

)
∫ T
0 ψ2(αx)dx = π

α

[
2−κ2

2κ2 (1 + 2κ2 +
√

1− κ2 + 4κ4)− 1+κ2+
√

1−κ2+4κ4

κ2

]
∫ T
0 ψ2

2(αx)dx = 2
α

(
E(κ) + 2(1+2κ2+

√
1−κ2+4κ4)((1−2κ2)E(κ)+(−1+κ2)K(κ))

3κ2

+ (1+2κ2+
√

1−κ2+4κ4)2((−2−3κ2+8κ4)E(κ)+2(1+κ2−2κ4)K(κ))
15κ4

)
λ0(L) = α2(k2 − 2− 2

√
1− k2 + 4k4)

λ2(L) = α2(k2 − 2 + 2
√

1− k2 + 4k4),
where α is given by (23). Thus, we have an explicit formula to work with in order to show (38).

7In the derivation of the formulas below, we have used the symbolic integration feature of the Mathematica
software.
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Figure 2. This is a graph of the function h(κ) =
R 2K(κ)
0 ψ2(x)dx√

λ2‖ψ2‖
−

R 2K(κ)
0 ψ0(x)dx√
|λ0|‖ψ0‖

.

Note that positivity of h is equivalent to the validity of (38).

From the graph in Figure 2, it is clear that the inequality (38) holds for all values of the
parameter κ.

4.1.2. Proof of (38) for LmKdV . In the case of Modified Korteweg-de Vries equation using (33)
and identities

sn2(x) = 1
κ2 (1− dn2(x))∫K

0 dn2(x)dx = E(κ)∫K
0 sn4(x)dx = 1

3κ4

[
(2 + κ2)K(κ)− 2(1 + κ2)E(κ)

]
we get that∫ T

0 ψ0(αx)dx = 2
ακ2 (
√

1− κ2 + κ4 − 1)K(κ) + (1 + κ2 −
√

1− κ2 + κ4)E(κ)

∫ T
0 ψ2

0(αx)dx = 2
α

(
K(κ)− 2(1 + κ2 −

√
1− κ2 + κ4)K(κ)−E(κ)

κ2

+(1 + κ2 −
√

1− κ2 + κ4)2 (2+κ2)K(κ)−2(1+κ2)E(κ)
3κ4

)
∫ T
0 ψ2(αx)dx = 2

ακ2 (
√

1− κ2 + κ4 + 1 + κ2)E(κ)− (1 +
√

1− κ2 + κ4)K(κ)

∫ T
0 ψ2

2(αx)dx = 2
α

(
K(κ)− 2(1 + κ2 +

√
1− κ2 + κ4)K(κ)E(κ)

κ2

+(1 + κ2 +
√

1− κ2 + κ4)2 (2+κ2)K(κ)−2(1+κ2)E(κ)
3κ4

)
λ0 = α2(k2 − 2− 2

√
1− k2 + k4)

λ2 = α2(k2 − 2 + 2
√

1− k2 + k4),
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where α is given by (33). Now the inequality (38) is is satisfies for all κ ∈ (0, 1). Again, the graph
below shows that the inequality (38) is satisfied for all values of the parameter κ.

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

Figure 3. This is a graph of the function h(κ) =
R 2K(κ)
0 ψ2(x)dx√

λ2‖ψ2‖
−

R 2K(κ)
0 ψ0(x)dx√
|λ0|‖ψ0‖

.

Note that positivity of h is equivalent to the validity of (38).

4.2. The nonlinear Schrödinger equation. In this section we will construct the periodic trav-
eling wave solution for the quadratic and cubic nonlinear Schrödinger equations and investigate
the spectral problems for corresponding operators. The results can be found in [17], but for
convenience we will present here. We show that the matrix operator(

L− 0
0 L+

)
has a single simple negative eigenvalue. The same will be true for the similar operator

−J
(
L− 0
0 L+

)
J = J−1

(
L− 0
0 L+

)
J . Thus, according to the instability criterium in Theo-

rem 4 and the representation (10), this implies that we can select a k so that the operator L(k)
satisfies (1) and (2), whence we will have shown spectral instability.

4.2.1. Quadratic Schrödinger equation. Consider the quadratic equation

(39) iut + uxx + |u|u = 0

for a complex-valued function u(x, t) = eiωtϕ(x).
For ϕ one obtains the equation (7), which is

ϕ′′ − ωϕ+ ϕ|ϕ| = 0.

Therefore,

(40) ϕ′2 − ωϕ2 +
2
3
ϕ2|ϕ| = c

and ϕ is periodic provided that the level set H(x, y) = c of the Hamiltonian system dH = 0,

H(x, y) = y2 − ωx2 +
2
3
x2|x|,
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contains a periodic trajectory (an oval). The level set H(x, y) = c contains two periodic tra-
jectories if ω > 0, c ∈ (−1

3ω
3, 0) and a unique periodic trajectory if ω ∈ R, c > 0. When two

periodic orbits exist, they both have the same period and the solutions can be distinguished by
their initial values.Under these conditions, equation (40) becomes H(ϕ,ϕ′) = c and its solution
ϕ is periodic of period T = T (ω, c).

-3 -2 -1 0 1 2 3

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 4. Level sets of the quadratic Schödinger Hamiltonian H = y2 − ωx2 +
2
3x

2|x|. We study the left and right periodic orbits inside the figure eight loop.

Below, we consider the case c < 0. Then either ϕ < 0 (the left case) or ϕ > 0 (the right
case). To express ϕ through elliptic functions, we denote by ϕ0 > ϕ1 > 0 the positive solutions
of 2

3ρ
3 − ωρ2 − c = 0. Then ϕ1 ≤ |ϕ| ≤ ϕ0 and one can rewrite (40) as

(41) ϕ′2 = 2
3(|ϕ| − ϕ1)(ϕ0 − |ϕ|)(|ϕ|+ ϕ0 + ϕ1 − 3

2ω).

Therefore 2ϕ0 + ϕ1 > ϕ0 + 2ϕ1 >
3
2ω. Introducing a new variable s ∈ (0, 1) via

|ϕ| = ϕ1 + (ϕ0 − ϕ1)s2, we transform (41) into

s′2 = α2(1− s2)(k′2 + k2s2)

where α, k, k′ are positive constants (k2 + k′2 = 1) given by

α2 =
4ϕ0 + 2ϕ1 − 3ω

12
, k2 =

2ϕ0 − 2ϕ1

4ϕ0 + 2ϕ1 − 3ω
, k′2 =

2ϕ0 + 4ϕ1 − 3ω
4ϕ0 + 2ϕ1 − 3ω

.

Therefore

(42) |ϕ(x)| = ϕ1 + (ϕ0 − ϕ1)cn2(αx; k).

Consider in [0, T ] = [0, 2K(k)/α] the differential operators introduced earlier in (8)

(43) L− = − d2

dx2
+ (ω − 2|ϕ|), L+ = − d2

dx2
+ (ω − |ϕ|),

supplied with periodic boundary conditions. By the above formulas,

ϕ0 − ϕ1 = 6α2k2, 2ϕ0 − ω = 4α2(1 + k2).
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Taking y = αx as an independent variable in L−, one obtains L− = α2Λ1 with an operator Λ1 in
[0, 2K(k)] given by

Λ1 = − d2

dy2
+ α−2[ω − 2(ϕ1 + (ϕ0 − ϕ1)cn2(y; k))]

= − d2

dy2
+
ω − 2ϕ0

α2
+

2(ϕ0 − ϕ1)
α2

sn2(y; k)

= − d2

dy2
− 4(1 + k2) + 12k2sn2(y; k).

The spectral properties of the operator Λ1 in [0, 2K(k)] are well-known. The first three eigen-
values are simple and moreover the corresponding eigenfunctions of Λ1 are given by

µ0 = κ2 − 2− 2
√

1− κ2 + 4κ4 < 0
ψ0(y) = dn(y;κ)[1− (1 + 2κ2 −

√
1− κ2 + 4κ4)sn2(y;κ)] > 0

µ1 = 0
ψ1(y) = dn(y;κ)sn(y;κ)cn(y;κ) = 1

2
d
dy cn

2(y;κ)

µ2 = κ2 − 2 + 2
√

1− κ2 + 4κ4 > 0
ψ2(y) = dn(y;κ)[1− (1 + 2κ2 +

√
1− κ2 + 4κ4)sn2(y;κ)].

Since the eigenvalues of L− and Λ1 are related via λn = α2µn, it follows that the first three
eigenvalues of the operator L−, equipped with periodic boundary condition on [0, 2K(k)] are
simple and λ0 < 0, λ1 = 0, λ2 > 0. The corresponding eigenfunctions are ψ0(αx), ψ1(αx) = Cϕ′

and ψ2(αx). In a similar way, since L+ = α2Λ2, one obtains that in [0, 2K(k)]

Λ2 = − d2

dy2
− 2(1 + k2) + 6k2sn2(y; k) + ω/2α2.

To express ω through α and k, one should take into account the fact that in the cubic equation
we used to determine ϕ0 and ϕ1, we have that the coefficient at ρ is zero. Therefore,

ϕ0ϕ1 + (ϕ0 + ϕ1)(3
2ω − ϕ0 − ϕ1) = 0.

As ϕ0 = 2α2 + 2α2k2 + 1
2ω, ϕ1 = 2α2 − 4α2k2 + 1

2ω, after replacing these values in the above
equation one obtains ω2 = 16α4(1− k2 + k4). Since ω > 0, we finally obtain

Λ2 = − d2

dy2
+ 2(−1− k2 +

√
1− k2 + k4) + 6k2sn2(y; k).

On the other hand, (42) yields

|ϕ| = 2α2[1 + k2 +
√

1− k2 + k4 − 3k2sn2(y; k)].

The first three eigenvalues and corresponding eigenfunctions of Λ2 are as follows:

λ0 = 0, ψ0 = ϕ,

λ1 = 2− k2 + 2
√

1− k2 + k4, ψ1 = dn′(y; k)

λ2 = 4
√

1− k2 + k4, ψ2 = 1 + k2 −
√

1− k2 + k4 − 3k2sn2(y; k).

The considerations above yield

Proposition 4. The linear operator L− defined by (43) has the following spectral properties:
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(i) The first three eigenvalues of L− are simple.

(ii) The second eigenvalue of L− is λ1 = 0.

(iii) The rest of the spectrum of L− consists of a discrete set of positive eigenvalues.

The linear operator L+ defined by (43) has the following spectral properties:

(i) L+ has no negative eigenvalue.

(ii) The first eigenvalue of L+ is zero, which is simple.

(iii) The rest of the spectrum of L+ consists of a discrete set of positive eigenvalues.

4.2.2. Cubic Schrödinger equation. Consider the cubic nonlinear Schrödinger equation

(44) iut + uxx + |u|2u = 0,

where u = u(x, t) is a complex-valued function of (x, t) ∈ R2 and u(x, t) = eiωtϕ(x).
For ϕ one obtains the equation

(45) ϕ′′ − ωϕ+ ϕ3 = 0.

Integrating once again, we obtain

(46) ϕ′2 − ωϕ2 +
1
2
ϕ4 = c

and ϕ is a periodic function provided that the energy level set H(x, y) = c of the Hamiltonian
system dH = 0,

H(x, y) = y2 − ωx2 +
1
2
x4,

contains an oval (a simple closed real curve free of critical points). The level set H(x, y) = c
contains two periodic trajectories if ω > 0, c ∈ (−1

2ω
2, 0) and a unique periodic trajectory if

ω ∈ R, c > 0. Under these conditions, the solution of (45) is determined by H(ϕ,ϕ′) = c and r
is periodic of period T = T (ω, c).

Below, we are going to consider the case c < 0. Let us denote by ϕ0 > ϕ1 > 0 the positive
roots of 1

2ϕ
4−ωϕ2− c = 0. Then, up to a translation, we obtain the respective explicit formulas

(47) ϕ(z) = ∓ϕ0dn(αz; k), k2 =
ϕ2

0 − ϕ2
1

ϕ2
0

=
−2ω + 2ϕ2

0

ϕ2
0

, α =
ϕ0√

2
, T =

2K(k)
α

.

Here and below K(k) and E(k) are, as usual, the complete elliptic integrals of the first and second
kind in a Legendre form. By (47), one also obtains ω = (2− k2)α2 and, finally,

(48) T =
2
√

2− k2K(k)√
ω

, k ∈ (0, 1), T ∈ I =
(

2π√
ω
,∞
)
.

Again, L− and L+ are given by

(49)
L− = −∂2

x + (ω − 3ϕ2),

L+ = −∂2
x + (ω − ϕ2),

with periodic boundary conditions in [0, T ].
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We use now (47) and (48) to rewrite operators L± in more appropriate form. From the
expression for ϕ(x) from (47) and the relations between elliptic functions sn(x), cn(x) and dn(x),
we obtain

L− = α2[−∂2
y + 6k2sn2(y)− 4− k2]

where y = αx.
It is well-known that the first five eigenvalues of Λ1 = −∂2

y + 6k2sn2(y, k), with periodic
boundary conditions on [0, 4K(k)], where K(k) is the complete elliptic integral of the first kind,
are simple. These eigenvalues and corresponding eigenfunctions are:

ν0 = 2 + 2k2 − 2
√

1− k2 + k4, φ0(y) = 1− (1 + k2 −
√

1− k2 + k4)sn2(y, k),
ν1 = 1 + k2, φ1(y) = cn(y, k)dn(y, k) = sn′(y, k),
ν2 = 1 + 4k2, φ2(y) = sn(y, k)dn(y, k) = −cn′(y, k),
ν3 = 4 + k2, φ3(y) = sn(y, k)cn(y, k) = −k−2dn′(y, k),

ν4 = 2 + 2k2 + 2
√

1− k2 + k4, φ4(y) = 1− (1 + k2 +
√

1− k2 + k4)sn2(y, k).

It follows that the first three eigenvalues of the operator L−, equipped with periodic boundary
condition on [0, 2K(k)] (that is, in the case of left and right family), are simple and λ0 = α2(ν0−
ν3) < 0, λ1 = α2(ν3 − ν3) = 0, λ2 = α2(ν4 − ν3) > 0. The corresponding eigenfunctions are
ψ0 = φ0(αx), ψ1 = ϕ′(x), ψ2 = φ4(αx).

Similarly, for the operator L+ we have

L+ = α2[−∂2
y + 2k2sn2(y, k)− k2]

in the case of left and right family. The spectrum of Λ2 = −∂2
y + 2k2sn2(y, k) is formed by

bands [k2, 1] ∪ [1 + k2,+∞). The first three eigenvalues and the corresponding eigenfunctions
with periodic boundary conditions on [0, 4K(k)] are simple and

ε0 = k2, θ0(y) = dn(y, k),
ε1 = 1, θ1(y) = cn(y, k),
ε2 = 1 + k2, θ2(y) = sn(y, k).

From (46) it follows that zero is an eigenvalue of L+ and it is the first eigenvalue in the case
of left and right family, with corresponding eigenfunction ϕ(x).

The above considerations gives an identical result to Proposition 4 for the operators L± defined
in (49). Thus, in both the quadratic and cubic cases, we have obtained that there is a single

negative eigenvalue for the matrix operator
(
L− 0
0 L+

)
and thus our proof is complete.

5. The defocusing modified KdV equation

In this section we will show that the above methods do not imply the transverse instability
of the defocusing modified KdV equation. It will be interesting to do time-evolution numerical
studies to see if these are eventually stable solutions.

More precisely, consider the defocusing modified Korteweg-de Vries equation

(50) ut − 3u2ux + uxxx = 0.

We are looking for traveling wave solutions u(x, t) = φ(x− ct), c < 0.
Substituting this specific solution in the defocusing mKdV and considering the integration

constant equal to zero then φ = φc satisfies the ordinary differential equation

(51) φ′′ − cφ− φ3 = 0.
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From this we obtain the first order differential equation (in the associated quadrature form)

(52) φ′2 =
1
2

(φ4 + 2cφ2 +A),

where A is the integration constant, whichs need to be different than zero in order to produce
periodic profile solutions. Analogously as in the case of modified Korteweg-de Vries equation, we
obtain the explicit form for the periodic traveling wave solutions

φc(ξ) = η2 sn(αξ; k),

where η1 > η2 > 0 are positive roots of the polynomial F (t) = t4 + 2ct2 + A and α = η1√
2
, k2 =

η2
2/η

2
1 ∈ (0, 1). Since the function sn(x) has minimal period 4K(k) then the minimal period of

φ, T , is given by T = 4K(k)/α. Moreover,

k2 =
−2c− η2

1

η2
1

Regarding the spectral problem for the operator L = −∂2
x + 3φ2 + c, we have the following

Proposition 5. Let φ be the snoidal wave solution of the defocusing Korteweg-de Vries equation.
Let

λ0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ · · ·,
denote the eigenvalues of the operator L. Then

λ0 < λ1 = 0 < λ2 < λ3 < λ4

are all simple while, for j ≥ 5, the λj are double eigenvalues. The λj’s only accumulate at +∞.

Proof. Since L d
dxφ = 0 and d

dxφ has 2 zeros in [0, T ), it follows that 0 is either λ1 or λ2. We will
show that 0 = λ1 < λ2.

From the expression for φ(x) , we obtain

L = α2[−∂2
y + 6k2sn2(y)− 1− k2]

where y = αx.
The eigenvalues and corresponding eigenfunctions are:

ν0 = 2 + 2k2 − 2
√

1− k2 + k4, ψ0(y) = 1− (1 + k2 −
√

1− k2 + k4)sn2(y, k),
ν1 = 1 + k2, ψ1(y) = cn(y, k)dn(y, k) = sn′(y, k),
ν2 = 1 + 4k2, ψ2(y) = sn(y, k)dn(y, k) = −cn′(y, k),
ν3 = 4 + k2, ψ3(y) = sn(y, k)cn(y, k) = −k−2dn′(y, k),

ν4 = 2 + 2k2 + 2
√

1− k2 + k4, ψ4(y) = 1− (1 + k2 +
√

1− k2 + k4)sn2(y, k).

It follows that the first five eigenvalues of the operator L, equipped with periodic boundary
condition on [0, 4K(k)] are simple and λ0 = α2(ν0 − ν1) < 0, λ1 = α2(ν1 − ν1) = 0, λ2 =
α2(ν2 − ν1) > 0 λ3 = α2(ν3 − ν1) > 0, λ4 = α2(ν4 − ν1) > 0. The corresponding eigenfunctions
are χ0 = ψ0(αx), χ1 = φ′(x), χ2 = ψ2(αx), χ3 = ψ3(αx), χ4 = ψ4(αx).

In the case of Defocusing Modified Korteweg-de Vries equation inequality (38) is equivalent to
the inequality

|(
√

1− κ2 + κ4 − 1)K(κ) + (1 + κ2 −
√

1− κ2 + κ4)E(κ)|√
|1 + κ2 − 2

√
1− κ2 + κ4|

<

<
|(
√

1− κ2 + κ4 + 1 + κ2)E(κ)− (1 +
√

1− κ2 + κ4)K(κ)|√
1 + κ2 + 2

√
1− κ2 + κ4
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However, one can see from the picture below, that this inequality does not hold for any value of
κ. �

0.2 0.4 0.6 0.8 1.0

!6

!5

!4

!3

!2

!1

Figure 5. Here, a plot of the difference of the two quantities is given. A positive
function implies instability.

Thus, our method fails to conclude transversal instability of such waves for any value of k.
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