MATHEMATICS 765, Fall 2016
 Midterm Exam

- Problem 1-75 pts

Prove that the following formula holds for all $n \in N$.

$$
\sum_{k=1}^{n}(2 k-1)^{2}=\frac{n\left(4 n^{2}-1\right)}{3}
$$

- Problem 2-75 pts

Suppose that $x_{0}=1, y_{0}=0$ and define

$$
x_{n}=x_{n-1}+2 y_{n-1}, \quad y_{n}=x_{n-1}+y_{n-1}
$$

for $n \in N$. Prove that $x_{n}^{2}-2 y_{n}^{2}= \pm 1$ for $n \in N$ and that

$$
\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=\sqrt{2} .
$$

- Problem 3-75 pts

Suppose that $\left\{x_{n}\right\}$ is a real sequence. Prove the following identity for the limits supremum and infimum:

$$
-\lim _{n \rightarrow \infty} \sup x_{n}=\lim _{n \rightarrow \infty} \inf \left(-x_{n}\right)
$$

- Problem 4-75 pts

Prove that if f, g are uniformly continuous on an interval $[a, b]$ and $g(x) \neq 0$ for $x \in[a, b]$, then the function $\frac{f}{g}$ is uniformly continuous on $[a, b]$.

- Bonus Problem - 50 pts - full credit or no credit only

Suppose that $f: N \rightarrow R$. If

$$
\lim _{n \rightarrow \infty} f(n+1)-f(n)=L,
$$

prove that

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{n}
$$

exists and equals L.

