MATH 950, FALL 2015

Homework 1 - due Monday, September 14

- Problem 1 (5 points)

For the sine-Gordon equation $u_{t t}=u_{x x}-\sin u$ define traveling kink solutions as $u(x, t)=f(x-c t)$ such that $f(z) \rightarrow 0$ as $z \rightarrow-\infty$ and $f(z) \rightarrow 2 \pi$ as $z \rightarrow+\infty$. Describe the equation that the profile function $f(z)$ satisfies and the speeds c, for which traveling kinks exist. Show that the profile function $f(z)=4 \arctan \left[\exp \left(\frac{z}{\sqrt{1-c^{2}}}\right]\right.$ solves this equation and sketch the resulting kink waves.

- Problem 2 (5 points)

Find the solution of $(x+1)^{2} u_{x}+(y-1)^{2} u_{y}=(x+y) u$ satisfying the condition $u(x, 0)=-1-x$ for $-1<x<\infty$. Where in the $x y$-plane is $u(x, y)$ determined by these conditions?

- Problem 3 (5 points)

Show that all the projected characteristic curves of

$$
(2 x+u) u_{x}+(2 y+u) u_{y}=u
$$

through the point $(1,1)$ are given by the straight line $y=x$.

- Problem 4 (5 points)

Solve $x u_{x}+y u_{y}+\left(u_{x}^{2}+u_{y}^{2}\right) / 2=u$ with initial condition $u(x, 0)=\left(1-x^{2}\right) / 2$.

- Problem 5 (5 points)

Solve the equation $\left(u_{x}\right)^{2}+\left(u_{y}\right)^{2}=1$ with initial data given by $s \rightarrow$ $(\sin s, \cos s, 0)$ for $0 \leq s \leq \pi / 2$. Based on the method of characteristics where in the $x y$-plane is $u(x, y)$ determined by these conditions?

- Problem 6 (5 points)

Read the application to geometrical optics section on p.36-40 in McOwen's book and then work out problem 9 on page 42 .

