DEPARTMENT OF MATHEMATICS UNIVERSITY OF KANSAS
 MATH 765 - Fall 2007 - Final Exam

Your Name: \qquad
On this exam, you may NOT use books and/or notes.

(50)
2 (50)
3 (50)
4 (50)
5 (50)
6 (50)
7 (50)
8 (50)
9 (50)
10 (50)

(1) Prove

$$
\sum_{k=1}^{n}(2 k-1)^{2}=\frac{n\left(4 n^{2}-1\right)}{3}
$$

(2) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences of real numbers, so that $x_{n} \rightarrow x, y_{n} \rightarrow x$, where x is an extended real number (i.e. x could be $\pm \infty$). Show that if $x_{n} \leq w_{n} \leq y_{n}$, then $w_{n} \rightarrow x$. In your proof, rely exclusively on the definition of limits.
(3) Suppose that $x_{0} \in \mathbf{R}$ and $x_{n+1}=\left(1+x_{n}\right) / 2$. Prove that $x_{n} \rightarrow 1$.
(4) Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a continuous function and

$$
\lim _{x \rightarrow+\infty} f(x)=\infty=\lim _{x \rightarrow-\infty} f(x)
$$

Prove that f achieves its minimum on \mathbf{R}, that is there exists $x_{m} \in \mathbf{R}$, so that $f\left(x_{m}\right)=\inf _{x \in \mathbf{R}} f(x)<\infty$.
(5) Let $f:(a, b) \rightarrow \mathbf{R}$ be differentiable function on the non-empty interval (a, b), such that f^{\prime} is bounded on (a, b). Prove that f is uniformly continuous on (a, b).
(6) Suppose $f:[a, b] \rightarrow \mathbf{R}$ and f is Riemann integrable. Prove that - If f is continuous at $x_{0} \in(a, b)$ and $f\left(x_{0}\right) \neq 0$, then

$$
\int_{a}^{b}|f(x)| d x>0 .
$$

- if f is in addition continuous on $[a, b]$, then $\int_{a}^{b}|f(x)| d x=0$ if and only if $f(x)=0$ for all $x \in[a, b]$.
(7) Suppose that $a_{k} \rightarrow 0$ and a_{k} is decreasing. Prove that $\sum_{k=0}^{\infty} a_{k} \sin (k x)$ converges uniformly on any closed interval $[a, b] \subset(0,2 \pi)$. What goes wrong in $[0,2 \pi]$.
Hint: Note that this does NOT follow from the M test. Instead, try to use the summation by parts formula as we did in class.
Bonus: 20 points Counterexamples anyone? That is, try to produce a function in the form $f(x)=\sum_{k} a_{k} \sin (k x)$, so that the convergence is not uniform.
(8) Let f, g be continuous on a closed bounded interval $[a, b]$, so that $|g(x)|>0$ for $x \in[a, b]$. Suppose $f_{n} \rightarrow f, g_{n} \rightarrow g$ uniformly on $[a, b]$. Prove that $f_{n} / g_{n} \rightarrow f / g$ uniformly on $[a, b]$.
Hint: Prove first that there exists $b>0$, so that $|g(x)| \geq b$.
(9) Find a closed form expression (i.e. an explicit formula) for the sum

$$
\sum_{k=0}^{\infty}(k+1) x^{k} .
$$

(10) Let f be Riemann integrable on $[0,1]$ and (right) continuous at 0 . Let $\alpha>0$. Compute

$$
\lim _{n \rightarrow \infty} n^{\alpha} \int_{0}^{n^{-\alpha}} f(x) d x
$$

Justify your computations.

