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1. Introduction 

Recently there is a permanent interest in the sensitivity analysis of the matrix 
Riccati equations arising in the solution of linear-quadratic optimisation and 
estimation problems in control theory. This interest is motivated by the fact 
that these equations are usually subject to perturbations in the data reflecting 
either parameter uncertainties or rounding errors, accompanying the numerical 
solution of the problem. Thus we have to deal with a family of Riccati equa- 
tions rather than with a single equation. Also, if a backwardly stable numerical 
method is implemented for the solution of the equation, then the computed so- 
lution will be close to the exact solution of an equation with slightly perturbed 
coefficients. If we have a quantitative measure for the sensitivity of the Riccati 
equation we may derive an accuracy estimate for the computed solution. With- 
out such accuracy estimate the corresponding computational algorithm will 
not meet the modern standards of reliability. 

In this paper we study the sensitivity of the solutions of the complex associ- 
ated algebraic matrix Riccati equation (AAMRE) relative to perturbations in 
its coefficients. The AAMRE is closely related to the standard algebraic Riccati 
equation, arising in the theory of linear continuous time-invariant systems. The 
sensitivity of the standard Riccati equation is studied in [2,4,10,13-15,201. We 
also give a full description and a parametrisation of the set of all solution to 
AAMRE. Similar results for the real AAMRE are outlined in [l 11. 

In Section 2 we give the statement of the problem. In Section 3 we consider 
special cases of AAMRE. General properties and a parametrisation of the so- 
lutions of AAMRE are given in Section 4. Here we characterise the solution set 
by the neutral subspaces of a Hermitian matrix, related to the Hamiltonian ma- 
trix of the standard Riccati equation. A method for reliable computation of all 
solutions of AAMRE is presented in Section 5. In Section 6 local linear (norm- 
wise and component-wise) and non-local non-linear perturbation analysis of 
the AAMRE is presented. In the first case we suppose that the perturbations 
in the data are asymptotically small and the corresponding bounds contain first 
order terms only. In this way the conditioning of the equation is determined as 
well. We also give a local perturbation bound (first order homogeneous but not 
additive), which is better or equal to the bound, based on condition numbers. 
In the second case an upper bound for the norm of the perturbation in the so- 
lution is obtained without the assumption that the coefficient perturbations are 
asymptotically small. This bound is a non-linear function of the perturbations 
in the data. Illustrative examples are presented in Section 7. 

We use the following abbreviations: Fmx” is the linear space of m x n matri- 
ces over the field 9 of real (9 = [w) or complex (F = C) numbers; 3 := J-1; 
Iw, = [O, 00); @” = a=mx’; II.11 a norm in @” or the corresponding induced norm 
in Cmx’ (if necessary we use the subscript 2 or F to denote the spectral or Fro- 
benius norm); Z, the unit n x n matrix; 2 E Cmxn, AT E UY” and 
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AH = A” E @nxm the complex conjugate, transpose and complex conjugate 
transpose of A E Cm”“; At E Cxm the pseudo-inverse of the matrix A E Cmxn; 
IAl = [laijl] E F!~” the matrix module of A E Cmxn; det(A) the determinant of 
A E Cnxn; rank(A) the rank of A E Cm”‘* , 5 the partial component-wise order 
relation in Rmx”, i.e. A 3 B if aij <b,, where A = [aii],B = [b,] E lJ3”““; .3’(n) 
the space of linear operators L : Cnxn -+ C”‘” (each L E Y(n) may be defined 
from L(Z) = xi AiZBi, where Z, Ai, Bi E C”“‘); 9~ E T(n) the identity opera- 
tor, i.e. $,2(Z) = Z for Z E Cnxn; 99(n) the set of pseudo-linear operators 
@ nx” --+ C”““, i.e. L E .92?(n) if L(Z) = &(Z) + L2(ZH), where LI,Lz E 2(n) 
(pseudo-linear operators are continuous but not in general differentiable over 
C, while the realification of a pseudo-linear operator is a linear operator 
over R); vet(Z) 6 Cm’ the vector column-wise representation of the matrix 
z E C”““; vecn(Z) = [vec(Zr)T,vec(Z2)T]T E IWZm” the real vector column-wise 
representation of the matrix Z = ZI + JZ~ E Cmxn, where Zj E R”““; 
92(n) c YP(n) and ‘39(n) c C”‘” the groups of unitary (AHA = In) and 
non-singular matrices respectively; X(n) c Cnx” the set of Hermitian matrices 
(AH = A); 2+(n) c y(n) the set of non-negative definite Hermitian matrices 
(we write A > 0 if A is non-negative and A > 0 if A is positive definite); 
sign(A) = (n,, L) the signature of the matrix A E X(n), where IZ+ and n- 
are the numbers of positive and negative eigenvalues of A respectively; 
Rg(A) c C” and Ker(A) c C” the range and kernel of the matrix A E Cmxn; 
dim(Y) and codim(Y) the (complex) dimension and codimension of the 
(complex) variety Y-; dimu(Y) and codimu(Y) the real dimension and codi- 
mension of the complex variety Y. The notation “:=” stands for “equal by 
definition”. The end of proofs is marked by 0. 

2. Problem statement 

Consider the complex algebraic matrix quadratic equation 

Q+AHX+XHA-XHUX=O, (1) 

where Q,M E S+(n) and A E Cnx” are given matrices, such that the triple 
C := (Q,A,M) is regular (i.e. the pair (Q, A] is detectable and the pair [A,M) 
is stabilizable) and X E Cnxn is the unknown matrix. As shown below, 
Eq. (1) is closely related to the famous algebraic matrix Riccati equation 

Q+AHX+X4-X44X=0 (2) 

arising in the theory of optimisation and filtering of linear continuous time-in- 
variant systems. For this reason, Eq. (1) is further referred to as the associated 
algebraic matrix Riccati equation @AMRE). Setting 

R(X,Y,C):=Q+AHX+YA-KW, 
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we may rewrite Eqs. (1) and (2) as R(X,X”, z) = 0 and R(X,X, C) = 0. 
The connection between Eqs. (1) and (2) is revealed as follows. Denote by 

E c @,X, and P c C”‘” the sets of all solutions of Eqs. (1) and (2) respectively. 
Note that while for Eq. (2) we have X E P if and only if X” E P, the inclusion 
X E 2 does not imply X” E E and vice versa. 

The solution sets s and P may have very complicated structure. However, 
the realification of the set z is a closed algebraic variety of real dimension n2 
and, unlike P, contains no isolated points. The examples, presented in Sec- 
tion 7, give an idea how the set E may look for n = 1 and n = 2. 

As it is well known [7,8] the solution set P of Eq. (2) may be characterised by 
the invariant n-dimensional subspaces of the Hamiltonian matrix 

In turn, the solution set E of (1) may be characterised by the neutral n-dimen- 
sional subspaces of the related Hermitian matrix 

s:= [: -:]H= [A” f:] Ernst. 

The solutions of Eqs. (1) and (2) may be Hermitian and non-Hermitian. Let 
g* .- ‘;: .- Y n A?(n) and P* := P n S(n) be the sets of Hermitian solutions of 
Eqs. (1) and (2) respectively. Since every Hermitian solution of Eq. (1) satisfies 
Eq. (2) and vice versa then s* = P’ and the solution sets s and P may be rep- 
resented as disjoint unions z = E:“* u E”, P = P* u PO, where @ := E \ F, 
PO := P \ 8’. 

Let 

In 0 
L(Z) := z 

[ 1 I E Y9(2n), 
n 

where Z E Cnxn. Then 

L( - Y)HL(X) = 
A-H -A4 

-R(X, Y, C) 1 -(A - MY")" ’ (5) 

Setting Y = X for X E P and X E P’ in Eq. (5) we get 

det (H) = (-l)“d(X)d(X”), X E P, 

and 

det(H) = (-l)“ld(X)12, X E P* 

where d(X) := det (A - Mx) # 0. Similarly, setting Y = XH for X E B it fol- 
lows from Eq. (5) 



M.M. Konstantinov et al. I Linear Algebra and its Applications 285 (1998) 7-31 

det(H) = (-l)“ld(X)[*, X E E. 

Hence A - Mx E %9(n). 

11 

Our next observation is that s fl P = 8* or, equivalently, go n P” = 0. In- 
deed, if X E B n P then (X - X”) (A - Mx) = 0. Since A - Mx E ‘?Jg(n) it fol- 
lows X = XH and the assertion is proved. 

The general properties of the solution of the real AAMRE 

Q+ATX+XTA -XT44X = 0, Q,A,M,X E [w”““, 

have been considered in [l 11. The extension of these results to the complex case, 
however is presented in Section 3. As may be expected, the structure of the so- 
lution set of the real AAMRE is more involved than that of the complex 
AAMRE due to the fact that the field [w is not algebraically closed. 

Consider now the perturbation analysis of Eq. (I), rewritten as 
F(X, C) = F(X, Q,A,M) = 0, where F(X, C) := R(X,XH, C). We note that the 
matrix functions F(., C) : @“x” + S(n) and F(X, Q, .,M) : Cnxn + Z(n) are 
pseudo-polynomials, i.e. they are continuous but not differentiable over C, 
see Section A.1 of Appendix A. However, in the framework of the realificat- 
ions Cnx” N [W*“’ and X(n) N IV*, the realifications of these functions are real 
analytic. 

We shall refer to Eq. (1) as the unperturbed equation and to a fixed solution 
X = X0 of (1) as the unperturbed solution. We note that the solution set 9 of 
Eq. (1) is a closed algebraic variety in C”” N [Wzn2 and the perturbation anal- 
ysis presented below is relative to a fixed solution X0 E z rather than to the 
whole variety 5. 

Let AQ,U,m E Cflx’ be perturbations of the matrix coefficients Q, A, A4 in 
(1) with AQ, AA4 E X’(n). Consider the perturbed equation 

Q+AQ+(A+A4)HY+YH(A+11A)-YH(M+hM)Y=0 (6) 

and denote A := [Ap,AA,AMIT E rW:, where AZ = l]AZ]] and ]].I] is the Fro- 
benius (F-) or spectral (2-) norm in Vxn. 

As it was shown above, A0 := A - &X0 E %2(n) for X0 E P. But then the 
partial Frechet pseudo-derivative &(X0, C) E 92(n), 

&(X0, C)(Z) := A,HZ + ZHAo 

of the left-hand side F(X, C) of (1) in X at X = XO is surjective (operators 
P(.,B) E P%n), acting according to the rule P(Z, B) = BHZ + ZB, are called 
associated Lyapunov operators, see Section A.2 of Appendix A). Then accord- 
ing to the implicit function theorem [9] we get the following assertion. 

Theorem 1. The perturbed equation (6) has a solution 

Y = Y(AC) =X0 + Ax, AC := (AQ, A& u), 
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in a neighbourhood of X0, such that Y(0) = X0. Moreover, the real$cation of Y (.) 
is a real analytic function of the realljications of the perturbations AQ, AA, AM in 
certain neighbourhood of the origin, e.g. for 11 AlI sufJiciently small. 

The perturbation problem solved in this paper is formulated as: 
(i) Find a local linear norm-wise estimate of the type 

AX< KQAQ+&AA +Kw~w+O(~~A~~~) (7) 

for the norm AX = IlUll of the perturbation AX as a function of AQ, AA, AM, 
where Kz E R, are the condition numbers of AAMRE relative to 
Z E {Q, A,M}, which is valid for II AlI asymptotically small. Find a local linear 
component-wise estimate 

Iveca(u)I 5 &Iveca(AQ)I +LIveca(A4 +L&cn(AWI +O(llAl12), 

IIAII + 0, 
for the matrix module IAXI of AX as a function of IAQl, I&I, IAA41, where 

La E R:n2x2n2 are the condition matrices of AAMRE. 
(ii) Find a domain 9 c [w:, 0 E 9, such that for each A E 9 Eq. (6) has a 
solution Y = Y(AC) = X0 + AX in the neighbourhood of X0, whose realifi- 
cation is a real analytic function of the realification of AC, and Y(0) =X0. 
Find an estimate 

Ax<f(A), A E 9, (8) 

where the function f : 9 + R, is continuous, non-decreasing in each com- 
ponent of A and f (0) = 0. 

Note that Eq. (8) is a non-local estimate since it holds for all (possibly small 
but finite) perturbation vectors A E 9, i.e. 11 AlI needs not to be asymptotically 
small. 

The above perturbation bounds are understood in the sense that there ex- 
ists a solution Y = X0 + AX of the perturbed equation (6), for which the esti- 
mates Eq. (7) or Eq. (8) hold. At the same time the perturbed equation may 
have solutions Y, for which the perturbation AX = Y -X0 does not satisfy 
these estimates (in particular, Eq. (6) may have solutions of arbitrary large 
norm). 

3. Special cases of AAMRE 

In this section we consider special cases of Eq. (1) in which either the solu- 
tion is obtained in explicit form or the actual order of the equation may be re- 
duced . 
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3.1. The case M = 0 

In this “completely uncontrollable” case AAMRE reduces to the associated 
Lyapunov equation 

Q+AHX+XHA = 0. (9) 

In view of the regularity of C the matrix A is stable and hence invertible. Thus 
the solution of Eq. (9) is X = -A-“(Q + Z - ZH)/2, where Z E Cnxn is an arbi- 
trary matrix, and 

B = {- A-“(Q + Z - ZH)/2: Z E C”“}. 

We see that here E is isomorphic to the set of n x n complex screw-Hermitian 
matrices, i.e. 2 N W2 and dimu(E) = n2 (for comparison, in the real case 
dim(E) = n(n - 1)/2). At the same time the only member of 8* is the positive 
definite solution x* of the Lyapunov equation Q + AHX +X4 = 0. 

3.2. The case M > 0 

In this “most controllable” case, Eq. (1) may be rewritten as 

(@x _ M-1’2A)H (M1j2x _ M-1/2,4) = Q + ,&,-‘A, (10) 

where Ml’2 is the positive definite square root of M. It follows from Eq. (10) 
that 

3 = 
1 

M-‘A + M-‘i2 U(Q + AHM-‘A)“‘: U E 9(n)} (11) 

see also [6,12]. The detectability of (Q, A] yields Q + AHM-lA E 99(n). Hence, 
according to (lo), the set 2 is isomorphic to 4?!(n). As in the previous case 
dimu(&) = n* but here B ’ IS a compact. As it is shown below, the real dimension 
of S is equal to n2 not only in the special cases M = 0 and M > 0 but also in the 
general case M 2 0. 

3.3. The effective order of AAMRE 

Let Y := rank[M, AM,. . . , A”-‘M] be th e d imension of the controllable sub- 
space of the pair [A,M). The integer r may be considered as the efSective order 
of AAMRE in the following sense. If 1 < r < n then the AAMRE reduces to 
three matrix equations, only one of which is in fact quadratic and is in the form 
(l), while the other two are linear and are solved explicitly. Indeed, if 1 < r < n 
then there exists a matrix D E 99’(n) such that ^ ̂  A 

2 :=D-‘AD A11 = [ Al2 1 , 
fi :=D-‘MD-H = M11 ’ 

0 A22 [ 0 1 0’ 
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where A,, E C’“‘, ^ a,, E X+(r), the pair [A,,,a,,) is controllable and the ma- 
trix A22 E @(n-r)x(n-r) is stable. Setting 

^ 
where X,, E Crxr, o,, E 2+(r), we get the equations 

$$&?,,, - A;&;1 - ‘@;A,, - Q,, = 0, (12) 

2,: ( 
^ ̂  

MIX,, - AII ̂  > - q&P,, - 02, - i,",i?*, = 0, (13) 

$$f,,~,;, - $t,* - _?;A,, - &, - Ay2& - _?&2,, = 0. (14) 

We see that only Eq. (12) is quadratic, while equations Eqs. (13) and (14) are 
linear and are explicitly solved in 2*, and & by 

&, = &;(~;(A&*&, - R,,) - A$?,, - Q,,) 

and 

where the matrices Xl, E @rx(n-r) and Z E C(n-r)x(n-r) are arbitrary. According 
to Section 3.2, the solution il, of Eq. (12) depends on ? free real parameters. 
Hence the solution 2 depends on 2r(n - Y) + (n - r)’ + 9 = n2 real parame- 
ters. In this case the solution set E has a compact component, homeomorphic 
to q(r) and of real dimension 9, and a non-compact component, homeomor- 
phic to R”-’ and of real dimension n2 - 2. 

In view of the above considerations only the case when the pair [A,M) is 
controllable (i.e. r = n) is of interest. That is why in the rest of the paper the 
controllability of [A,M) is assumed. 

4. Properties and parametrisation of the solution set 

4.1. Properties of the solution 

The set z is a quadric - a clysed algebraic variety in the Zariski topology of 
the realification of @“’ 2: @” P R2” . The tangent set FX, c Cnxn of B at 
X0 E 3 is TX,, = X0 + Ker@ (X0, z)), where 

Ker(F,(&, C)) = {AiH(Z - ZH): Z E C”““}. 

Hence the real dimension dimR(5) of E at & satisfies 

dimR(8) < dimR(FXO) = dimn(Fx(& C)) = n2 (15) 
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Since the field @ is algebraically closed, then dimu(E) is not less than 
2n2(= dimw(@“x”)) minus n2 (= the number of scalar real equations in 
Eq. (l)), i.e. dimu(8) > n2. Combining with Eq. (15) we get dimu(Z) = n2. 
For comparison, the dimension of E in the real case is n(n - 1)/2, see [ll]. 

As it is well known the characterisation of the solution set P of the standard 
Riccati equation (2) as well as the direct methods to solve this equation are 
based on the S$P(n)-similarity invariant eigenstructure [17,7,8], or the e(n)- 
similarity invariant Schur structure [16] of the Hamiltonian matrix (3). Similar 
role for the associated equation (1) play the %9(n)-congruent invariant struc- 
ture, or the %(n)-congruent invariant structure of the Hermitian matrix (4). 

Denote by Y c Cxn the set of all subspaces of C2” of complex dimension n, 
which are simultaneously S-neutral and complementary to the subspace 

0 
Rg 

[ 1 4 ’ 
i.e. w c Y if and only if there exist matrices Wr E %.9(n) and W2 E Cnxn such 
that $V = Rg( W) and WHSW = 0, where 

w, w:= . 
[ 1 w, 

Let 9” c YY be the set of all w = Rg( W) such that WIH W2 = W2” W,. Then the 
following characterization of E and Z’ may be given. 

Theorem 2. There is a bijection 2 between the sets B and 9 and a bijection 1’ 
between the sets Z* and Y*. 

Proof. If ?Y = Rg( W) E 9’ is defined as above, then 

?ly-=Rg 
L 

[ 1 w, w,- ’ 
and 

W,HQW, + yHAHW2 + WFA& - W2HM~2 = 0, 

i.e. Jf := w2Wle1 is a solution to Eq. (1). Now the mapping 1 : z + _l~ &fined 
from 48 

n(X) := Rg x , X E E; [ 1 
A-+[ ;]) := KFV-l, Rg[ ;] E 9, 

is the desired bijection. 
To prove the existence of R* note that for W, E %2(n) we have WzFVml E X’(n) 

if and only if WIH W2 = W2” W,. Hence the restriction X = Ala. : 8* + Y’ of 
1: E+YoonZ:“’ c E is a bijection between Z* and Y*. 0 
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We noie that Theorem 2 gives a characterisation of E and 8’ by Y and 9’*, 
similar to that of P by the n-dimensional H-invariant subspaces of C2n as de- 
scribed in [18,7,8]. 

4.2. Parametrisation of the solution 

Having in mind Theorem 2, it is possible in principle to construct the solu- 
tion set E using the subspaces W E Y and their representations as images of 
the matrices W E C2nxn. Instead, we shall adopt another approach constructing 
matrices 

R= RI1 R12 

[ 1 E 

RZI R22 

with RI, E 99(n), such that 

39y2n) 

j := R”SR = E %5?(2n), 

where Si E 99(n), S, E 
the form X = Rz,R;/. 

z(n). In this way the solution of Eq. (1) is obtained in 

First we shall show that sign(S) = (n,n), i.e. that the matrix S is congruent 
to diag(Z,,, -In). For this purpose we shall construct a matrix 

T= Fl Tl2 

[ 1 fi1 
T22 E gm2n) 

such that T”ST = diag(Z,, -In). 
Let X* E 8* be the (unique) Hermitian non-negative solution to Eqs. (1) and 

(2) such that the matrix A* := A - MY is stable. Let, in addition, z* > 0 be the 
unique solution of the Lyapunov equation A*2 + Z(A*)” + A4 = 0. Then one of 
the matrices T, which congruently transform S into its diagonal form diag 
(Zn, -I,), is 3 

T:= [;* I][: -J [ (A*;“,2 -y [i (a;-“]. (16) 

Hence we have det (T) = (- l)"/ det (A*) # 0. It follows from Eq. (16) that 

T,, = Z, - V, T,, = X*(Zn - V) + @*)-l/2, 

T,, = Zn + V, T,, = X*(Zn + V) - @*)-l/2, 

3 To construct the real counterpart of the matrix T was the trickiest point when writing the paper 

[I 11. 
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where V := Z*(A*)-“/2. Note that T,, # 0. Indeed, if T,, = 0 then V = Z, and 
A* = Z/2, which is in a contradiction with the stability of A*. 

Representing the matrix R as R = TK, where K E %_Y(2n), we get 

KH diag(I,, -&)K = L?. 

The general solution of this equation in K E 99(2n) is 

X= 
UK21 L + UK22 1 : U E a(n), Kz2 E C”““; L, K2, E C&Y(n) . 
K21 K22 

Hence for K E X we have 

R,, =&I(U) = (TuU+ T&&I, 
R21 =R2l(U) = (T21U+ fi2)K21. 

Denote by 52 the set of all unitary matrices U, for which the matrix R,,(U) is 
singular, i.e. 

Q := {U E 4?(n): det(Ti,U + Ti2) = 0). (17) 

It may be shown that the set Sz is either empty, or is a hyper surface in 4?(n) 
with codim(Q) = 1. Indeed, if neither of these options is valid, then Q should 
coincide with %(‘(n). But for U = I,, the matrix T,, U + T,2 = 2I, is non-singular, 
i.e. Z,, @ 52. Hence s2 # e(n). 

Denote Q# = a’(n) \ Sz and define the function G : s2# + 3 from 

G(U) := Rz,(U)R;,,(U) = (Tz,U+ T22)(T,,U + T,2)-‘, U E Q#. (18) 
The function G is continuous and in view of Theorem 2 we have G(@) = 2. 
We shall show that the inverse function G-l is defined and continuous on 8. 
Indeed, let X E B be arbitrary. In view of the surjectivity of G there exists 
U E Q2# such that X = G(U). Hence (XTII - T2,) U = -(XT12 - T22). Since 

[x,-LIT = [XT, - %,a2 - T221 = (ml1 - &)[L -VI 

and rank ([X, -&IT) = n we see that both matrices XTll - T2, and XT12 - T22 
are non-singular. Thus the inverse function G-’ is well defined from 

G-‘(X) = -(XT,, - T2,)-1(XT,2 - T22)r X E E. 

Hence we have proved 

Theorem 3. The mapping G, defined by (18), is a homeomorphism 
sets B and Q2#. 

Thus an efficient parametrisation of the solution set 

2 = {G(U): U E Q#} 

between the 

(19) 
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is obtained, based on Eq. (18). For this purpose one has first to find the stabi- 
lising solution X’ of the standard Riccati equation (2) and then to solve the 
Lyapunov equation A’Z + Z(A*)” + M, A* := A - Mx*. In Section 5 we shall 
show that even these computations may be avoided using a numerically stable 
@(2n)-reduction of the Hermitian matrix S into its diagonal form. 

The fact that the sets 2 and Q# are homeomorhpic suggests the following 
assertion. 

Theorem 4. The set & is compact (homeomorphic to s(n)) if and only $0 = 0, 
or, equivalently, the set 3 is non-compact (closed but unbounded) if and only if 
S2# 0. 

Proof. If Q = 0 then Q2# = 42(n) and the “if’ statement is obvious. Suppose 
now that E is compact. Then Q# is also corn act 

! 
and the function 

p : Q# + la,, defined from p(U) := 1 det (Tr 1 U + Tl2) 1 , reaches its exact lower 
bound po 3 0 for some U = UO, i.e. po = p( Uo). We shall show that po > 0, 
which means that the set Q, defined from (17), is empty. Indeed, if w = 0 then 
for X0 := G(Uo) we have xo(T11 Uo + T12) = 751 Uo + T22. Since 
fi = 1 det (Tl, UO + Tt2) 1 = 0, this contradicts to 

Hence po > 0 and D = 0. 0 

The topological characterisation of E, provided by Theorem 4, seems not to 
be convenient for practical purpose since one has to check whether Q = 0 or 
!J # 0, which may not be an easy task. Fortunately, the following easily veri- 
fiable assertion is valid. 

Theorem 5. The set B is compact and homeomorphic to +2(n) (respectively, E is 
not compact - closed but unbounded) ifand only ifrank (M) = n (respectively, if 
and only ifrank (M) < n). 

Proof. We already know that if A4 > 0 then E:, as given by (1 l), is 
homeomorphic to e(n). To complete the proof we shall show that if 
rank(M) < n then s2 # 0 and hence J - is non-compact in view of Theorem 4. 
For this purpose we shall construct a particular member U of 52 thus showing 
that Q # 0. 

Let the polar decompositions of the matrices Tlj be Tlj := T;i& where 
T;j := (TljTt)“’ E z+(n) and K E e(n); j= 1,2. Let U := -c”fi. Then 
TtlU + Tl2 = T;1 - T;2)(-6). Recalling that V = P(A*)-“/2, where 
A*Z* + Z*(A*) L + M = 0, set 
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V’ := -(V + V”) = ; (‘4*)-%!f(A*)-” > 0. 

Since p <I, + WH then 

(20) 

(I.+V*+WH)1’2<(z~+WH)1’2+(V1)1’2, 

- (In - v* + WH)1’2 < - (I, + Wn)1’2 + (V*)1’2. 

Hence 

0 6 T;, - 1;; = (In + V’ + VV” )I” - (I, - V’ + VV” ) 1’2 < 2( V*)“2. 

Since according to Eq. (20) the matrix V* is singular, we obtain that T;, - T;, is 
also singular. Thus U E Sz and s1# 0, which completes the proof. 0 

5. Reliable computation of Z 

The use of general 99(2n)-congruent transformations, as described in Sec- 
tion 4, may lead to numerical difficulties. To avoid this we shall consider the 
use of numerically more reliable @(2n)-congruent transformations on S in or- 
der to construct the members of B and eventually F. 

Denote by Jf the set of all matrices 

N= 
Nli N12 

[ 1 N21 
N22 E %!(2n) 

such that 

Rg 
NII 

[ 1 N21 
c w, 

and by JV’ the set of all N E _Af such that N:N2r = N[Nr , . The sets JV” and A’-* 
may be divided into disjoint orbits relative to the equivalence relation N, where 
N N P if and only if N2rN;;’ = PzrP;;’ . Denote by .Af/ N and JV*/ N the corre- 
sponding orbit spaces. Then the following statement, similar to Theorem 2, 
may be proved. 

Theorem 6. There is a bijection ,a between the sets B and A’/ - and a bijection p* 
between the sets F and A+/-. 

Proof. The mapping y : .N -+ 2, defined from y(N) = NzrNi’, is surjective 
since for each X E 3 the matrix 

N = N(X) := J(x) -XHJ(XH) 

WX) 1 J(X”) ’ 
J(X) := (In +x”x)-1’2, 
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belongs to Jf and y(N) = X. Hence y may be decomposed as y = n o p, where 
71: JV+M/ N is the canonical projection and p : .Af/ --+ E is the desired 
bijection. The existence of the bijection ,D* is proved in a similar way. 0 

Note that each X E g defines the orbit 

p-‘(x) = I[ U, J(x) -X” U2J(XH) 

xu, J(x) UzJW”) 1 
: VI, U2 E a(n) 

which is homeomorphic to a(n) x q(n), i.e. the members of the orbit spaces 
are of real dimension 2n2. 

Let N = [Nij] E %!(2n), where N;j E Cnx”, be the matrix which congruently re- 
duces S into diagonal form, i.e. NHSN = diag(ni, -AZ), Aj := diag(jlir, . . , 

ljn), Ajk > 0, and Alkr -A2k are the eigenvalues of S. Note that this transforma- 
tion may be accomplished in a numerically reliable way using the correspond- 
ing software from EISPACK, LINPACK or LAPACK [19,5,3,1]. 

For U E @l(n) define the matrices @ii (U) := Nil A,“2U + N,TA~“~; j = 1,2, 
and let 

fi := {U E %(n):det(O(U)) # 0). 

Now the set Z may be effectively parametrized from 

E = {T(U): u E h}, (21) 

where T(U) := 02i(U)0;,i(U). 
As in Section 4 it may be shown that r is a homeomorphism between Z and 

52. The advantage of the parametrisation (21) in comparison to (19) is that it is 
based on numerically more reliable unitary transformations only (note that ob- 
taining /1,-“2 does not require matrix computations). 

6. Perturbation bounds for AAMRE 

6.1. Local linear bounds 

Let l141”~n~ and I14gu~n~ be the induced norms in Y(n) and 92(n), i.e. 

lIwYII,(n) := max { IIL(Z) Z E Cnxn, lIZI\ = l} 

for L E 9, 9 E {~(n),.PY(n)}. 
Setting Y =X0 + hx the perturbed equation (6) may be written as 

F(&, + AX, C + AC) = F, (AX, AC) + F2(AX, AZ) = 0, (22) 
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where 

F,(AX, AC) := -AXH(M + AM)AX (23) 

+ (AP -X,HAM)Ax + AxH(Aft - AMXI). 

Here Fz(Xo, ,E) is the partial FrCchet (pseudo) derivative of F(X, Z) in Z at 
x =x0, which is a member of P_??(n) for Z = X,A and a member of 9(n) 
for Z = Q,M. A straightforward calculation gives 

Fx(&, C)(Z) = A;Z + ZHAo, FQ(&, z)(z) = z 

FA (Xo, C)(Z) = X,“Z + Z”Xo, FM(X~, C)(Z) = -Xo”ZXo. 
(24) 

Having in mind Eqs. (23) and (24), it follows from Eq. (22) 

Fx(Xo,C)(AX) = -AQ-X,HAA -AAHXo+XoAMY,, -Fz(AX,AC). 

(25) 

Since Fx(Xo, C)(Z) E S(n), the operator Fx(&, iC) maps Pfl P R2”’ into 
2(n) Y W2. Hence Fx(Xo, C) is not invertible. It may be shown (see Sectio- 
n A.2 of Appendix A) that the operator Fx(X& C) is surjective if and only if 
the matrix A0 = A - MY0 is non-singular (which fortunately is the case). 

Denote by F$(Xo, C) the right inverse operator of Fx(&, C), which is of min- 
imum induced norm Il.l19aCn), i.e. Fx(Xo, C) o F$(Xo, C) = X,,Z and let 

(an explicit expression for &Yo, C) is given later on). Then Eq. (25) yields 

AX=Fi(XoJ)(-AQ-X,,AA -AAHXo+X+MYo- F2(AX,AC)). 

(27) 

Eq. (27) makes it possible to obtain estimates in terms of absolute or relative 
condition numbers 

where dz := Az/llPII and 6 := [6Q, S,.,, aMIT E R:. 

The quantities Kz are the absolute condition numbers of AAMRE (1) relative 
to perturbations in the matrix coefficients Z E {Q,A,M}, while kz := KzllZll/ 
llXoII are the corresponding relative condition numbers. 
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If the relative perturbations in the data satisfy 6z < & for some &, > 0 then 

&+%+0($), 60 + 0; k := kQ + kA + kM. 

Hence the quantity k may be considered as an overall estimate of the relative 
conditioning of AAMRE. However, this number will not be a relevant measure 
of the real perturbation if some of the quantities k,, kA, kM is much larger than 
the others while the corresponding perturbation is small or zero. 

Later on we show that local estimates not based on condition numbers may 
give better results. 

It follows from Eqs. (27) and (28) that 

and in particular KQ = cp(Xo, Z). The expressions (29) for Kz may not be con- 
venient for evaluation of the condition numbers for large values of n. In this 
case the following estimates may be used. 

In both F- and 2-norms 

KA 6 ‘+(x0, +o, KM < cp(xo, Q:; x0 := IIXOII. (30) 

If & := max{AQ, AA, AM} then 

AX 6 cp(xo, Z)(l +xoJ2Ao + O(A:). (31) 

It must be stressed that the above results are valid without the assumption 
that the matrices Q + AQ or A4 + m are non-negative definite. Hence we have 
proved the following theorem. 

Theorem 7. For small llAll the estimates (28) and (31) are valid, where 
the condition numbers Kz are determined or estimated from (24), (26), (29) and 
(30). 

Theorem 7 gives local norm-wise bounds for the perturbation in the solution 
as a function of the perturbations in the data. However, norm-wise estimates 
may not be relevant if the modules of the elements of the perturbations AQ, 
AA, 11M vary significantly in magnitude. In this case the implementation of 
component-wise perturbation estimates seems more adequate. Linear local 
component-wise perturbation bounds are directly available from Eq. (25) ne- 
glecting the term -F2. We have 

P(M,Ao) = -AQ - J’(MXo) +XoUXo + 0(11412), 

where 

(32) 

P(Z, B) := BHZ + ZHB. 
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Taking the vecu operation from both sides of Eq. (32) we get 

n&40) veca(AX) = - vecu(AQ) - ZI(&) vecu(ti) 

+ Y(X,) vec&W + O(llAll’). 
(33) 

Here n(B) is the matrix of the realification of the operator P(., B), 
B = B1 + JB~ E C”““, Bj E Wx”, i.e. 

II(B) := PI nl(Bd 
-fl,(B2) n2(&) I 

E R2n2x2nz 
7 

II,(R) := I,, ~3 RT + (RT @I,)P,, n,(R):=Z,@R’-(RT@4P, 

and Y(B) is the matrix of the realification of the operator Zt-+BZB, 

Y(B) := Yl(B) -Yv,(B) 
Y*(B) YI (B) 1 E R2n2x2n2 7 

Y,(B) :=B;@B, -B;@B2, Y~(R):=B;@BB~+B;@B,, 

where P, E l&x”2 is the vet-permutation matrix, vec(ZT) = P,, vet(Z). 
If the induced norm in 99(n) is based on the Frobenius matrix norm then 

the quantity cp(X,, C) may be calculated using the matrix representation of 
P(.J0), namely 4$x0, C) = Ilfl+l12. 

It follows from Eq. (33) that 

Ivecu(AWI i Iflt(h)llvec~(AQ)l 
+ 1~+(~0)~(~0)llvecw(~)I (34) 

+ I~+(~oY&)lI vw&W + OWll’>~ 
where 3 is the component-wise partial order relation in [W2n2. 

Using Eq. (33) we may derive at least two more local norm-wise bounds, 
which are alternative to the estimate (28), based on condition numbers (one 
of them will always be at least as good as (28)). Set 5 = AX, A1 := Ae, 
A2 := AA, A3 := AM, x := vecu(AX), al := vecu(AQ), a2 := vecu(L\A), 
a3 := vecu(AM) and 

Al := -n+(Ao), A2 := -n+(&)n+(&), 

A, := I7+(Ao)Y(Xo). 

Then we may rewrite Eq. (33) as 

n = Alal +Azaz +A3u3 + o(~lu~~*) = da + o(~~u~~*), 

where 
(35) 

d := [Al,A2,A3] E Cn2x3n2, a := [UT, a;, UT]‘. 
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When using the F-norm for the perturbations in the data and in the solution, 
the problem is to estimate 5 = ]Icc~~~ subject to the constraints ]laill2 < Ai. 

The condition based norm-wise estimate (28) 

< <EI (A) + WAII’) := KA + WY’), 

K := [liA1ii2> k112, kil21, 

is one of the possibilities. Another estimate is based on the second equality in 
Bq. (35), 

5 GE2(A) + Wll’) := ll~ll2ll~ll + OWII’)~ 

In general El (A) and E2 (A) are alternative, i.e. which one is better depends on 
the particular problem. 

We also have 

t2 = $$a”Ajaj + 0(llAl13) 6 fJAHAjli2AiAj + 0(llAl13) 
ij= 1 

Hence 

5 <Es(A) + O(]lA]l’) := @& + 0( llA112), 

where 2 = [I~@A,I~,] E X’(3). Since E3 (A) 6 El (A) we see that the bound E3 is 
better (or eventually equal) to the condition based estimate El. Finally we get 

Ax <E(A) + 0( ~~A~~“) := min { ll~ll2ll~ll~ m} + WAII’). (36) 

Thus we have proved the following statement. 

Theorem 8. For small l]A]l the local component-wise estimate (34) and the 
improved local norm-wise estimate (36) for AAMRE are valid. 

6.2. Non-local non-linear bounds 

The local bounds of type Ax < E(A), derived in Section 6.1, have a very se- 
rious drawback - they are valid only asymptotically, for ]]A]1 + 0. But in prac- 
tice one always has finite perturbations. Even if the latter seem to be small in 
the sense that llS/l CC 1, the neglected 0(]lAl]2) terms may be large enough in 
order to turn the local bound into a NaB (NaB is something that is Not a 
Bound in the rigorous sense). To overcome this difficulty in Section 7 we derive 
a non-local non-linear bound for Ax, which is valid in a (possibly small but) 
finite domain for the perturbation vector A. For this purpose we use the tech- 
nique of Lyapunov majorants and the Schauder fixed point principle as pro- 
posed in [13,14]. 
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Eq. (27) may be used to obtain non-local perturbation bounds for the solu- 
tion. For this purpose rewrite the perturbed equation (6) as an operator equa- 
tion 2 = ,4(Z) for Z := AX, where n is the right-hand side of Eq. (27). 

We shall show that under some conditions on A there exists p = f(A) such 
that the continuous operator n maps the closed ball 

B, := {Z E Cnxn: llZl/r < p} 

into itself. Let Z E B,. Then according to the Schauder fixed point principle 
there exists a solution Z E B, of the operator equation Z = A(Z), i.e. 
AX = IlZllr <P. 

Applying the vecn operation to n(Z) we get 

llG’)ll~ 6 NP, A) := ao(4 + al(A)p + a2Wp2, (37) 

where 

uo(A) := E(A), 

al(A) := 211n+(Ao)l12A.4 
(38) 

~309 := ~~~+&)112WII2 + AM). 

Due to Eq. (37) the operator n will map the closed convex set B, into itself if 
there exist p > 0 such that h(p, A) < p. The last inequality holds true if and only 
if 

(39) 

In this case we may choose p = f(A) as the smaller root of the quadratic equa- 
tion 

Q(A)P* - (1 - ai(A))p + uo(A) = 0, 

i.e. 

f(A) = 2ao(A) 
1 -u,(A)+ m’ (40) 

where 

d(A) := (1 - ul(A))’ - 4uo(A)u2(A). 

Thus we have proved the following theorem. 

(41) 

Theorem 9. Let the condition (39) be jiirJilled. Then the perturbed equation (6) 
has a solution Y =X0 + AX in the neighbourhood of X0 such that the 
estimate Ax <f(A), A E 9, holds, where the function f is defined via (40), 
(41) and (38). 
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7. Examples 

Example 1. Consider the first order AAMRE 

MIX[2-AX-‘4&Q=o 

together with the standard Riccati equation 

MX2-@+x)X-Q=O, 

where M, Q > 0 and A E C. If M > 0 (see Section 3.2) the solution set 8 is the 
circle 

centred at A/M E C and with radius 4 Q + IA12/M2. At the same time the set P 
contains two members, 

which are the intersection points of & with the real axis. 
If M = 0 (see Section 3.1) then, by the regularity of C, we have A +A < 0. 

Hence the solution of 2 + fl + Q = 0 is the straight line 

The set P here has a single member X = -Q/(A + A), which is the intersection 
of z with the real axis. 

We see that in both cases E is a closed algebraic variety in @ N R2: a com- 
pact isomorphic to a(l) if M > 0 and a straight line if M = 0. 

Example 2. Consider the second order AAMRE with matrices 

Q= [: ;], A= [; i]> M= [:, :]. 

Let 

x= X’ x3 
[ 1 x2 x4 

be a solution of the unperturbed equation (1). Then 

F(X, C) = X2 +jl2 - lx1l2 x4 - x*x3 

ss4 - xp3 1 - lx312 1 
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and the general solution, given by 

27 

ii 

z 
F- 

exp (344 
Y--- 

at + lz12/2 if exph) 1 
; zE@; q,tE[W I , 

depends on four real parameters. Further on we have 

- exp (84 
0 1 ; det (A) = exp(]cp) # 0. 

There are two Hermitian solutions in E, which in the given case are real and 
correspond to cp = t = 0 and z = &A 

x+=[;’ A], x-=[-y _&I 
(they are also the Hermitian members of P). The set P has two symmetric non- 
Hermitian, as well as two anti-Hermitian members, listed below 

If we choose a particular solution X0 E 2 from cp = t = 0 and z = J then 

&= [,‘, ‘,I, Ao= [A” ;]. 
In this case the matrices of the realification of FX(&, C) and its pseudoinverse 
are 

WAo) = 

0 2 0 O-20 0 0 

1 0 0 1 0 0 -1 0 

-10 0 1 0 0 -1 0 

0 0 -2 0 0 0 0 0 

0000000 0 

0 0 -1 0 -1 0 0 -1 

0010100 1 

0000000 0 

Iln(Ao)llz = 1 + 6 
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Iln+(A,)11* = y . 

Acknowledgements 

The authors thank the referee for his helpful comments. 

Appendix A 

A.1. Complex matrix pseudo-polynomials 

Denote by Y(n) the set of matrix polynomial functions C”” x Cxn + C”“” 
of two matrix variables, i.e. R E Y(n) if R(X, Y) is a polynomial in the matrices 
X, Y E C”‘“. Let o(n) be the set of all functions G : ‘I?” + C”““, which may 
be represented as G(X) = R(X,XH) for some R E Y(n). The members of 
o(n) are called pseudo-polynomials. The pseudo-polynomials are continuous 
but not, in general, differentiable over C as a consequence of the non-differen- 
tiability of the function z H Z. However, the realification of a pseudo-polyno- 
mial is a real analytic function. Let 99’(n) c B(n) be the set of pseudo- 
linear operators, i.e. P E 99(n) if P(Z) = P,(Z) + P2(ZH), where Pk E 9(n). 
The pseudo-linear operators are additive, i.e. P(X + Y) = P(X) + P(Y), but 
not homogeneous over C, i.e. P(1Z) # M(Z), J. E @ \ [w. 

For an operator L E 92’(n) we define its image and kernel as 

Rg(L) := {L(X):X E F”} c Fx”, 
Ker(L) := {X E VXn:L(X) = 0) c Vxn. 

For a function G E o(n), where G(X) = R(X,XH) and R E Y(n), we define the 
Frechet pseudo-derivative G&Co) E gT(n) of G at X =X0 as 

W&)(Z) = Rx(xoJ,H)(Z) + &QGd,H)(Z”), 
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where RX&, YO) and &(X0, YO) are the partial FrCchet derivatives of R in X 
and Y respectively at the point (X, Y) = (X0, YO). 

For G E o(n) the solution set r c Cnxn of the equation G(X) = 0 is closed 
in the standard point-wise topology. For X0 E r the tangent set yX, to the set 
r at the point X0 is defined as TX0 := X0 + Ker(G,&$)). 

A.2. Associated Lyapunov operators 

Consider the operator P(.,B): Cnxn N R2n2 + 2(n) N Rn2, defined from 
P(Z,B) := BHZ + ZHB, where B E @“’ is a given matrix. Obviously 
P(., B) E 99(n). We shall be concerned with conditions under which the op- 
erator P(., B) is surjective, i.e. {P(Z, B): Z E UY”} = X’(n), or, equivalently, 
the equation P(Z, B) = C is solvable in Z for each C E S(n). The above prob- 
lem is solved by the following assertion. 

Theorem 10. The operator P(., B) is surjective if and only if the matrix B is 
non-singular. 

Proof. We shall prove the theorem by induction on n showing first that the 
operator P( ., B) is surjective if B is non-singular. For n = 1 the equation 
BZ + PB = C is solvable in Z E C for each C E R if and only if B # 0, 
Z = JBt + BC/(21B[*), where t E R is arbitrary. Suppose now that every 
operator P(., B1) : C(n-l)x(n-‘) 
matrix Bt E @(n-l)x(n-l) 

-+ X(n - 1) is surjective if the underlying 
is non-singular. We shall show that the operator 

P(..B) : Cnxn + 2(n) is also surjective provided B E Vxn is non-singular. 
The matrix B E 33(n) can always be taken in the form 

B= 
B1 0 

[ 1 bH B ’ 

where B1 E 99(n - l), b E KY’ and 0 # p E @ (one may use a preliminary 
transformation B + UHBU, U E a(n), to reduce B in lower Schur form if nec- 
essary). Partitioning the matrices 

z= Zl Y 

[ 1 ZH 
i  

z1 E @(4x(4. y z E (y-1. [ E @ 

7 , , 

and P(Z, B) in accordance with the partitioning of B we have 

P(Z, B) = 
BFZ, + ZFBI + bzH + zbH Byy + lb + /3z 

~BI + rbH + $zH ss + E 1 
Consider an arbitrary Hermitian matrix 

(A.11 

c= Cl c 
[ 1 CH E J@), 

rl 
Cl E %(n - 1) y E @(“-‘) 7 , 9 E [w. 
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By the induction assumption the equation BYZ, + ZpBI = Cl is solvable in Z1 
since BI E YY(n - 1). Denote by Zp any solution of the latter equation. Then 
it follows from Eq. (A.l) that the matrix 

fJ ,= 

. [ 
zp B;“(c-u4 
0 8uM812) 1 

solves the equation BHZ + ZHB = C for arbitrary C E z(n). Hence the opera- 
tor P( ., B) E P,, is surjective provided B E 3_Y(n). 

To show that the surjectivity of P(., B) E 9, implies B E %2’(n), suppose 
that P( ., B) E 8, is surjective but the matrix B is singular. Then one of the low- 
er Schur forms of B is 

BI 0 
[ 1 b" 0 ’ 

B, E @-lb+-1) 
3 

i.e. /? = 0. Then according to Eq. (A. 1) the (n, n)-element of P(Z, B) will be zero 
for each Z E Vxn and hence P(., B) is not surjective. 0 
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