
DISCRETE AND CONTINUOUS Website: http://AIMsciences.org
DYNAMICAL SYSTEMS
Supplement Volume 2005 pp. 824–832

ON THE GLOBAL ATTRACTOR FOR THE DAMPED
BENJAMIN-BONA-MAHONY EQUATION

Milena Stanislavova

Department of Mathematics
University of Kansas

Lawrence, KS 66045, USA

Abstract. We present a new necessary and sufficient condition to verify the asymp-
totic compactness of an evolution equation defined in an unbounded domain, which
involves the Littlewood-Paley projection operators. We then use this condition to
prove the existence of an attractor for the damped Benjamin-Bona-Mahony equa-
tion in the phase space H1(R) by showing the solutions are point dissipative and
asymptotically compact. Moreover the attractor is in fact smoother and it belongs
to H3/2−ε for every ε > 0.

1. Introduction and Preliminaries. In the literature on water waves there are
numerous models describing the two-way propagation of long waves of small ampli-
tude. Examples of such equations in R1 in which the competing effects of the nonlin-
earity and dispersion are of the same small order are ut+ux+uux+uxxx−νuxx = 0
(KdV-Burgers equation) and ut + ux + uux − uxxt − νuxx = 0 (regularized long
wave or Benjamin-Bona-Mahony equation). More generally, consider the following
Benjamin-Bona-Mahony (BBM) equation:

ut −∆ut − ν∆u + div(f(u)) = g, (1)

where ν is a positive constant. The BBM equation was proposed in [9] as a model for
propagation of long waves which incorporates nonlinear dispersive and dissipative
effects. The existence and uniqueness of solutions, as well as the decay rates of
solutions for this equation were studied by many authors, see, for example, [6, 7,
9, 3, 4, 10]. When the equation is defined in a bounded domain, there exists finite
dimensional global attractor, see [13, 25, 26]. Note that when the domain of the
equation is unbounded there are additional difficulties when proving the existence of
attractors because, in this case, the Sobolev embeddings are not compact. There are
several methods which can be used to show the existence of attractors in standard
Sobolev spaces when the equations are defined in unbounded domains. One can
use energy equation technique to show that the weak asymptotic compactness is
equivalent to the strong asymptotic compactness or decompose the solution operator
into a compact part and an asymptotically small part. A third method is to prove
that the solutions are uniformly small for large space and time variables by a cut-off
function or by a weight function.

Our main goal in this paper is to present a new necessary and sufficient condition
for an evolution equation to be asymptotically compact in a Sobolev space defined
on an unbounded domain. As an application of this method we will investigate
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the asymptotic behavior of the solutions of the following damped Benjamin-Bona-
Mahony (BBM) equation defined on R1:

ut − utxx − νuxx + νu + (u2)x = g(x), (2)

where ν is a positive constant, g ∈ L2(R) and (t, x) ∈ R1
+ ×R1.

Remark: In [22] we use this technique to prove the existence of local attractors
for the Benjamin-Bona-Mahony equation (1) on R3, under the assumption that
‖g‖L2 << 1. That is there exists an ε > 0 and a ball BH1(R) of radius R = R(ε)
such that whenever the sequence of initial conditions {u0

n} ∈ BH1(R) and tn → +∞
{S(tn)u0

n} is asymptotically compact.
The paper is structured as follows. In section 1 we give an inroduction and

some preliminary results about attractors for evolution equations and methods from
harmonic analysis. In section 2 we formulate and prove the Riesz-Rellich criteria
for asymptotic compactness of evolution semigroups. In section 3 we establish
the global well-posedness for the equation (2), we show that the orbits are point
dissipative and use Riesz-Rellich criteria to prove their asymptotic compactness.
This establishes the existence of attractor for the damped BBM equation on R. We
prove the following result.

Theorem 1. For the damped Benjamin-Bona-Mahony equation (2) there exists a
global attractor in H1(R). Moreover the attractor is in fact smoother and it belongs
to H3/2−ε for every ε > 0.

In what follows, we will need some basic facts from harmonic analysis, which
we recall next. Denote by S the Schwartz class. Then given f ∈ S, the Fourier
transform of f is defined by

f̂(ξ) =
∫

Rn

f(x)e−2πi〈x,ξ〉dx.

Fix an even function ϕ in C∞0 (Rn), so that the support of ϕ is in the annulus

1/2 ≤ |ξ| ≤ 2 and
∞∑

k=−∞
ϕ(2−kx) = 1 for all x 6= 0. Define the operator Pδ

via P̂δf(ξ) = ϕ(δ−1ξ)f̂(ξ). Observe that Pδ essentially restricts the Fourier support
of the function f to the annulus δ/2 ≤ |ξ| ≤ 2δ and

∑

δ dyadic

Pδ = 1. Sometimes

we will denote Pδu simply by uδ and call this the Littlewood-Paley projection
operator at frequency δ. We will also make use of the operators P<δ :=

∑
δ′<δ Pδ′ ,

etc. Note that the kernel form of such operators is given by Pδf = δnϕ̂(δ·) ∗ f
and thus, since ‖δnϕ̂(δ·)‖L1 . 1, we have that Pδ : Lp → Lp for all 1 ≤ p ≤ ∞.
Here and after, by f . g, we mean that there is an absolute constant C such that
f ≤ Cg. By f ∼ g, we mean f . g and g . f . Throughout this paper, we denote
by ‖ · ‖Lp(Rn) the norm of Lp(Rn) and ‖ · ‖ the norm of L2(Rn).

Before continuing, let us recall some basic definitions and results about attractors
for evolution equations. Consider an initial value problem for an evolution equation

d

dt
u(t) = F (u(t)), u(0) = u0,

defined on a Hilbert space H. This problem is well-posed if there exists for every
u0 ∈ H a unique solution u ∈ C([0, +∞),H) and in this case we can define the
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solution semigroup {S(t)}t≥0 by S(t)u0 = u(t). S(t) maps H into H, satisfies the
semigroup properties

S(t + s) = S(t)S(s), S(0) = Id

and is continuous in the initial data for each t ≥ 0.
S(t) is point dissipative if there is a bounded set B such that for any u0 ∈

H, S(t)u0 ∈ B for all sufficiently large t ≥ 0. S(t) is asymptotically compact
in H if S(tn)un has a convergent subsequence for any bounded sequence un when
tn → +∞.
A ⊂ H is called a global attractor for the evolution equation if it is compact,

invariant (S(t)A = A, t ≥ 0) and attracts every bounded set X ( S(t)X →
A, t →∞).

It is well known that to show the existence of an attractor one has to prove
that S(t)t≥0 is point dissipative and asymptotically compact. When working in
infinite domain the second of these two steps is usually more difficult. We discuss
next a sufficient condition for a dynamical system (evolution semigroup) to be
asymptotically compact in a Sobolev space defined on an unbounded domain. This
condition says roughly that for asymptotic compactness on unbounded domain it
is necessary for the solutions to be uniformly small when time and space Fourier
variables are large enough.

2. Proof of Riesz-Rellich Criteria for Asymptotic Compactness. Recall
the following theorem due to Riesz (see Theorem XIII.66, p. 248, [21]).

Proposition 1. Let S ⊆ Lp(Rn) with 1 ≤ p < ∞. Then S is precompact in
Lp(Rn) if and only if the following conditions are satisfied:

(1) S is bounded in Lp(Rn);
(2) f → 0 in Lp sense at infinity uniformly in S, i.e., for any ε, there is a

bounded set K ⊂ Rn so that for all f ∈ S:
∫
Rn\K |f(x)|pdx ≤ εp;

(3) f(·−y) → f uniformly in S as y → 0, i.e., for any ε, there is δ so that f ∈ S
and |y| < δ imply that

∫
Rn |f(x− y)− f(x)|pdx ≤ εp.

We note that in a bounded domain D, the condition for compactness of a sequence
in Lp(D) reduces to (1) and (3), since (2) is obviously satisfied.
In the special and important case p = 2 instead of checking the hard to verify condi-
tion (3) in Proposition 1, one may equivalently check that the L2 mass of the Fourier
transform on the complements of large balls tends to zero. Our next proposition
shows that the uniform vanishing of the Fourier transform implies equicontinuity
and is in the spirit of Theorem XIII.65 in [21].

Proposition 2. Assume {fn}∞n=1 is bounded in L2(Rn). Then

sup
n

∫

|ξ|>M

|f̂n|2dξ → 0 as M →∞

implies that supn ‖fn(. + h)− fn(.)‖L2 → 0 as h → 0.

Proof. Take ε > 0 and select M = M(ε) so that sup
n

∫
|ξ|>M

|f̂n(ξ)|2dξ ≤ ε2.

Choose δ = ε/(M sup
n
‖fn‖L2). For every |h| ≤ δ, we have by the Plancherel’s



FOR THE DAMPED BENJAMIN-BONA-MAHONY EQUATION 827

theorem

sup
n
‖fn(· − h)− fn(·)‖2L2 ≤

∫
|e2πihξ − 1|2|f̂n(ξ)|2dξ .

.
∫

|ξ|>M

|f̂n(ξ)|2dξ + h2

∫

|ξ|<M

|ξ|2|f̂n(ξ)|2dξ .

. ε2 + h2M2 sup
n
‖fn‖2L2 ≤ 2ε2.

Consider a dynamical system {S(t)}t≥0 and let S(t)fn solves an evolution equa-
tion with initial condition fn. Suppose that sup

n
‖fn‖H1 < B. Let tn → ∞ and

denote un(tn, .) = S(tn)fn. We have the following criteria for asymptotic compact-
ness.

Proposition 3. Assume that
• sup

n
‖un(tn, .)‖H1 ≤ C(B)

• lim sup
n
‖un(tn, .)‖H1(|x|>N) → 0 as N →∞

• lim sup
n
‖P>Nun(tn, .)‖H1 → 0 as N →∞

Then the sequence {un(tn, .)} is precompact.

Note that above, we have changed the sup to lim sup. This is possible, since the
notion of precompactness is stable under taking subsequences.
We will apply this result to study the attractor for the damped Benjamin-Bona-
Mahony equation .

3. Existence of Attractor for the Damped BBM Equation. In order to
define the dynamical system for the equation (2) we need to prove global well-
posedness for this equation in the space H1(R). First we need to consider the
Helmholtz operator (1−∂2

x)−1 defined as the inverse of the second order differential
operator (1 − ∂2

x). Alternatively, one defines it for (sufficiently) smooth functions
f via F((1 − ∂2

x)−1f)(ξ) := (1 + 4π2|ξ|2)−1f̂(ξ). The following simple lemma is
a variant of an endpoint Sobolev embedding result, which will be needed in our
estimates later on.

Lemma 1. Let u, v ∈ L2(R). Then
∥∥∂x(1− ∂2

x)−1(uv)
∥∥

L2(R)
. ‖u‖2‖v‖2.

Proof. By Plancherel’s formula and Hölder’s inequality, we have

|F(∂x(1− ∂2
x)−1(uv))(ξ)| .< ξ >−1

∣∣∣∣
∫

û(ξ − η)v̂(η)dη

∣∣∣∣ .< ξ >−1 ‖u‖2‖v‖2,

where < ξ >:= (1+ |ξ|2)1/2. The result follows since < ξ >−1∈ L2
ξ(R), the weighted

L2 space.

Remark One can obviously improve the result above to
∥∥|∂x|s(1− ∂2

x)−1(uv)
∥∥

L2(R)

. ‖u‖2‖v‖2 for all 0 ≤ s < 3/2, where F(|∂x|sf)(ξ) := |ξ|sf̂(ξ).
Next, we rewrite the damped Benjamin-Bona-Mahony equation in evolution form

using the operator (1− ∂2
x)−1.{

ut + νu + ∂x(1− ∂2
x)−1(u2) = (1− ∂2

x)−1g(x)
u(0, x) = f(x). (3)
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Note that the classical Benjamin-Bona-Mahony equation (1) looks very similar when
written in evolution form.{

ut − ν∆(1−∆)−1u + div(1−∆)−1(u + 1
2u2) = (1−∆)−1g.

u(0) = f(x). (4)

The only difference between (3) and (4) is that the term ν∆(1−∆)−1u is replaced
with νu. For large frequencies both terms are equlivalent for obviuos reasons, they
only differ in low frequencies. It is exactly the accumulation of mass in low frequen-
cies which is the main obstacle to showing the existence of attractors in dimension
one for the classical Benjamin-Bona-Mahony equation . In fact in [2] there is a
counterexample that shows that attractor does not exist in dimension one for the
following Benjamin-Bona-Mahony equation ut − uxxt − uxx + u2ux = 0.

Next, we proceed to show local well-posedness for (3). Consider the equivalent
integral equation:

u(t, x) = f(x) +

t∫

0

(
νu(s)− ∂x(1− ∂2

x)−1(u2) + (1− ∂2
x)−1g(x)

)
ds.

Denote by F (u) = νu− ∂x(1− ∂2
x)−1(u2) + (1− ∂2

x)−1g the nonlinearity. It is easy
to show that F maps H1(R) into itself and is locally Lipschitz continuous. More
precisely, there exists a constant C such that

‖F (u)‖H1 ≤ C‖u‖2H1 + ν‖u‖H1 + C‖g‖L2 , (5)
‖F (u)− F (v)‖H1 ≤ C‖u− v‖H1(1 + max(‖u‖H1 , ‖v‖H1)). (6)

Then by the fixed point argument, we find that the equation is locally well-posed in
H1(R). To prove global well-posedness we need an apriori estimate for the ‖u‖H1 .
To do this we multiply the equation by u and integrate in x to get

∂t

∫
(u2 + u2

x)dx + ν

∫
(u2 + u2

x)dx =
∫

g(x)udx.

Denote by I(t) =
∫

(u2 + u2
x)dx and estimate that

∂tI + νI ≤ ‖g‖L2‖u‖L2 ≤ ‖g‖L2

√
I(t).

Multiply both sides by eνt and integrate from 0 to T to get that

I(T )eνt − I(0) ≤ sup
0≤t≤T

‖g‖L2e
νt sup

0≤t≤T

√
I(T ).

If J(T ) = sup
0≤t≤T

I(t), then we have that

J(T ) ≤ J(0)e−νT + ‖g‖L2

√
J(T ).

Using Gronwall-type argument we see that

J(T ) ≤ c(J(0)e−νT + ‖g‖L2)

and thus ‖u‖H1 is uniformly bounded. Thus the equation (3) is globally well-posed
when ‖g‖H1 < ∞ and ‖f‖H1 < ∞. Moreover, the point dissipativeness follows
from the estimate

lim
t→+∞

‖u‖H1 ≤ C‖g‖L2 .

Next, we proceed to check the three conditions of the Riesz-Rellich criteria,
namely the uniform boundedness of the orbits, the uniform smallness on the comple-
ments of large balls and the uniform continuity in H1. Uniform boundedness of the
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orbits is clear from the previous argument. To show that lim supn ‖un(tn, .)‖H1(|x|>N)

→ 0 as N →∞ we consider a modified energy functional

EN,n =
∫

(u2
n + (∂xun)2)(1− ϕ(

x

N
))dx ,

where the smooth cutoff function ϕ ∈ C∞(R) is defined as 1 if |x| < 1 and 0 if
|x| > 2. We compute

E′
N,n(t) = 2

∫
(un(un)t + (un)x(un)xt)(1− ϕ(

x

N
))dx =

= 2
∫

un

[−νun − ∂x(1− ∂2
x)−1(u2

n) + (1− ∂2
x)−1g

]
(1− ϕ(

x

N
)dx+

+2
∫

(un)x

[−ν(un)x − ∂2
x(1− ∂2

x)−1(u2
n) + ∂x(1− ∂2

x)−1g
]
(1− ϕ(

x

N
)dx

Combining terms, integrating by parts and using the identity

∂2
x(1− ∂2

x)−1 = (∂2
x − 1)(1− ∂2

x)−1 + (1− ∂2
x)−1

we get that

∂tEN,n + 2νEN,n =
2
N

∫
un(1− ∂2

x)−1(u2
n)ϕ′(

x

N
)dx +

2
3N

∫
u3

nϕ′(
x

N
)dx+

+
2
N

∫
un ∂x(1− ∂2

x)−1g ϕ′(
x

N
)dx + 2

∫
un g(1− ϕ(

x

N
))dx

Next, we estimate the terms on the right hand side.

| 2
N

∫
un(1− ∂2

x)−1(u2
n)ϕ′(

x

N
)dx| ≤ 2

N
‖un‖L2

∥∥(1− ∂2
x)−1(u2

n)
∥∥

L2

≤ 2
N
‖un‖L2

∥∥u2
n

∥∥
L1 ≤ 2

‖un‖3L2

N
≤ c

N
.

Last equality is due to the fact that the operator (1 − ∂2
x)−1 maps L1(R1) into

L2(R1). Also

| 2
3N

∫
u3

nϕ′(
x

N
)dx| ≤ 2

3N
‖un‖3L3 ≤ 2

3N
‖un‖3H1 ≤ c

N
.

Using the boundedness of the operator ∂x(1− ∂2
x)−1 in L2 we estimate

| 2
N

∫
u ∂x(1− ∂2

x)−1g ϕ′(
x

N
)dx| ≤ c

N
‖un‖L2

∥∥∂x(1− ∂2
x)−1g

∥∥
L2(|x|>N/2)

≤ c

N
‖un‖L2‖g‖L2(|x|>N/2) ≤

c

N
‖g‖L2(|x|>N/2).

Finally

|
∫

un g(1− ϕ(
x

N
))dx| ≤ ‖un‖L2‖g‖L2(|x|>N/2) ≤ C‖g‖L2(|x|>N/2)

Altogether we have

∂tEN,n + 2νEN,n ≤ c

N
+ C‖g‖L2(|x|>N/2).

Using again Gronwall type arguments we see that

lim
N→∞

lim sup
n

‖un(tn, .)‖H1(|x|>N) = lim
N→∞

lim sup
n

EN,n(t) ≤

≤ lim
N→∞

lim sup
n

e−νtnEN,n(0) + lim
N→∞

‖g‖L2(|x|>N/2) = 0.
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The last condition that we have to check is the uniform continuity in H1, i.e.

sup
n
‖P>N un(tn, .)‖H1 → 0 as N →∞.

For large N we have that
∫ |P>N ux|2dx >>

∫ |P>N u|2dx. Thus, suffices to show
that

Jn
>N (t) =

∫
|P>N (un)x|2dx → 0 as

satisfies limN→∞ lim supn Jn
>N (tn) = 0.

Again consider

∂tJ
n
>N (t) = 2

∫
P>N (un)x P>N (un)xtdx =

= 2
∫

P>N (un)x P>N (−νn(un)x − ∂2
x(1− ∂2

x)−1(u2
n)− ∂x(1− ∂2

x)−1g)dx

We obtain that
∂tJ

n
>N (t) + 2ν Jn

>N =

= 2
∫

P>N (un)x P>N (∂2
x(1−∂2

x)−1(u2
n))dx+2

∫
P>N (un)x P>N (∂x(1−∂2

x)−1g)dx

For the second term on the right we have the easy estimate
∫

P>N (un)x P>N (∂x(1− ∂2
x)−1g)dx

≤ ‖P>N (un)x‖L2

∥∥P>N (∂x(1− ∂2
x)−1g

∥∥
L2

≤
√

Jn
>N (t)

1
N
‖g‖L2 ≤ c

N
.

To estimate the first term we will need the following lemma.

Lemma 2. ∥∥P>N (u2)
∥∥

L2(R1)
≤ c

N
‖u‖2H1(R1)

Using the lemma, we get
∫

P>N (un)x P>N (∂2
x(1−∂2

x)−1(u2
n))dx ≤ ‖P>N (un)x‖L2

∥∥P>N∂2
x(1− ∂2

x)−1(u2
n)

∥∥
L2

≤
√

Jn
>N (t)

∥∥P>N (u2
n)

∥∥
L2 ≤

c

N

√
Jn

>N (t)‖un‖2H1(R1) ≤
c

N
.

Thus
∂tJ

n
>N (t) + 2ν Jn

>N (t) ≤ c

N
and as before this means that

lim
N→∞

lim sup
n

Jn
>N (tn) = 0

.
Note that from this computation one gets that for every u in the attractor, we have

∫
|P>Nux(x)|2dx = lim sup

n

∫
|P>N (un)x(tn, x)|2dx ≤ CN−1.

It follows that ux ∈ H1/2−ε, or u ∈ H3/2−ε for all ε > 0.
Next, we prove Lemma 2.
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Proof. We will show that ‖P>N (fg)‖L2(R) ≤ C
N ‖f‖H1‖g‖H1 . Furthermore, let N ∼

2s. If we establish the estimate

‖(fg)l‖L2 ≤ C2−l‖f‖H1‖g‖H1 , (7)

the lemma would follow by dyadic summing (7) in l ≥ s− 2.
Note that since

f̂g(η) = f̂ ∗ ĝ(η) =
∫

f̂(η − ξ)ĝ(ξ)dξ,

we have that supp f̂g ⊂ supp f̂ + supp ĝ.
Next,

Pl(fg) =
∑

k,m

Pl(fkgm) =
∑

k,m:|k−m|>3

Pl(fkgm) +
∑

k,m:|k−m|≤3

Pl(fkgm)

However, if |k−m| > 3, it follows that |max(k,m)− l| ≤ 3. Indeed, if |max(k, m)−
l| > 3, we will have that suppf̂k + suppĝm ⊂ {ξ : |ξ| ∼ 2max(k,m)}, which is disjoint
with {ξ : |ξ| ∼ 2l}, and therefore Pl(fkgm) = 0 for this configuration.

Similarly, if |k −m| ≤ 3, it follows that min(k, m) > l − 5. Therefore,

Pl(fg) =
∑

k,m:|k−m|>3 &|max(k,m)−l|≤3

Pl(fkgm)+
∑

k,m:|k−m|≤3 & min(k,m)>l−5

Pl(fkgm).

Since the expressions are symmetric in k,m, let us assume without loss of generality
that k ≥ m. Estimate the first term by Hölder’s inequality and Sobolev embedding,
we obtain ∑

k,m:|k−m|>3 &|k−l|≤3

‖fk‖L2‖gm‖L∞

≤ C(
∑

k:|k−l|≤3

2−k‖f‖H1)(‖g‖L2 +
∑
m>0

2−m/2‖gm‖H1)

≤ C2−l‖f‖H1‖g‖H1 .

The second term is estimated by
∑

k,m:|k−m|≤3 &m>l−5

‖Pl(fkgm)‖L2

≤ C
∑

k,m:|k−m|≤3 &m>l−5

2l/2‖Pl(fkgm)‖L1

≤ C
∑

k,m:|k−m|≤3 &m>l−5

2l/2‖fk‖L2‖gm‖L2

≤ C
∑

k,m:|k−m|≤3 &m>l−5

2l/2−m−k‖f‖H1‖g‖H1 ≤

≤ C2−3l/2‖f‖H1‖g‖H1 .
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