ON THE GLOBAL ATTRACTOR FOR THE DAMPED BENJAMIN-BONA-MAHONY EQUATION

MILENA STANISLAVOVA
Department of Mathematics
University of Kansas
Lawrence, KS 66045, USA

Abstract. We present a new necessary and sufficient condition to verify the asymptotic compactness of an evolution equation defined in an unbounded domain, which involves the Littlewood-Paley projection operators. We then use this condition to prove the existence of an attractor for the damped Benjamin-Bona-Mahony equation in the phase space $H^1(\mathbb{R})$ by showing the solutions are point dissipative and asymptotically compact. Moreover the attractor is in fact smoother and it belongs to $H^{3/2-\varepsilon}$ for every $\varepsilon > 0$.

1. Introduction and Preliminaries. In the literature on water waves there are numerous models describing the two-way propagation of long waves of small amplitude. Examples of such equations in \mathbb{R}^1 in which the competing effects of the nonlinearity and dispersion are of the same small order are

$$u_t + u_x + uu_x + u_{xxx} - \nu u_{xx} = 0$$

(KdV-Burgers equation) and

$$u_t + u_x + uu_x - u_{xxt} - \nu u_{xx} = 0$$

(regularized long wave or Benjamin-Bona-Mahony equation). More generally, consider the following Benjamin-Bona-Mahony (BBM) equation:

$$u_t - \Delta u_t - \nu \Delta u + \text{div}(f(u)) = g,$$ \hspace{1cm} (1)

where ν is a positive constant. The BBM equation was proposed in [9] as a model for propagation of long waves which incorporates nonlinear dispersive and dissipative effects. The existence and uniqueness of solutions, as well as the decay rates of solutions for this equation were studied by many authors, see, for example, [6, 7, 9, 3, 4, 10]. When the equation is defined in a bounded domain, there exists finite dimensional global attractor, see [13, 25, 26]. Note that when the domain of the equation is unbounded there are additional difficulties when proving the existence of attractors because, in this case, the Sobolev embeddings are not compact. There are several methods which can be used to show the existence of attractors in standard Sobolev spaces when the equations are defined in unbounded domains. One can use energy equation technique to show that the weak asymptotic compactness is equivalent to the strong asymptotic compactness or decompose the solution operator into a compact part and an asymptotically small part. A third method is to prove that the solutions are uniformly small for large space and time variables by a cut-off function or by a weight function.

Our main goal in this paper is to present a new necessary and sufficient condition for an evolution equation to be asymptotically compact in a Sobolev space defined on an unbounded domain. As an application of this method we will investigate

2000 Mathematics Subject Classification. Primary: 35B40; Secondary: 35B41.
This material is based upon work supported by the NSF under grant # EPS-0236913 and matching support from the State of Kansas through Kansas Technology Enterprise Corporation.

824
the asymptotic behavior of the solutions of the following damped Benjamin-Bona-Mahony (BBM) equation defined on \mathbb{R}^1:

$$ u_t - u_{1xx} - \nu u_{xx} + \nu u + (u^2)_x = g(x), $$

where ν is a positive constant, $g \in L^2(\mathbb{R})$ and $(t, x) \in \mathbb{R}_+^1 \times \mathbb{R}^1$.

Remark: In [22] we use this technique to prove the existence of local attractors for the Benjamin-Bona-Mahony equation (1) on \mathbb{R}^3, under the assumption that $\|g\|_{L^2} << 1$. That is there exists an $\varepsilon > 0$ and a ball $B_{\varepsilon}(R)$ of radius $R = R(\varepsilon)$ such that whenever the sequence of initial conditions $\{u^0_n\} \in B_{\varepsilon}(R)$ and $t_n \to +\infty$ the sequence of solutions $\{S(t_n)u^0_n\}$ is asymptotically compact.

The paper is structured as follows. In section 1 we give an introduction and some preliminary results about attractors for evolution equations and methods from harmonic analysis. In section 2 we formulate and prove the Riesz-Rellich criteria for asymptotic compactness of evolution semigroups. In section 3 we establish the global well-posedness for the equation (2), with the assumption of dissipative and use Riesz-Rellich criteria to prove their asymptotic compactness. This establishes the existence of attractor for the damped BBM equation on \mathbb{R}. We prove the following result.

Theorem 1. For the damped Benjamin-Bona-Mahony equation (2) there exists a global attractor in $H^1(\mathbb{R})$. Moreover the attractor is in fact smoother and it belongs to $H^{3/2-\varepsilon}$ for every $\varepsilon > 0$.

In what follows, we will need some basic facts from harmonic analysis, which we recall next. Denote by \mathcal{S} the Schwartz class. Then given $f \in \mathcal{S}$, the Fourier transform of f is defined by

$$ \hat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi i (x, \xi)}dx. $$

Fix an even function $\varphi \in C_0^\infty(\mathbb{R}^n)$, so that the support of φ is in the annulus $1/2 \leq |\xi| \leq 2$ and $\sum_{k=-\infty}^{\infty} \varphi(2^{-k}x) = 1$ for all $x \neq 0$. Define the operator P_δ via $\hat{P_\delta}f(\xi) = \varphi(\delta^{-1}\xi)\hat{f}(\xi)$. Observe that P_δ essentially restricts the Fourier support of the function f to the annulus $\delta/2 \leq |\xi| \leq 2\delta$ and $\sum_{\delta \text{ dyadic}} P_\delta = 1$. Sometimes we will denote $P_\delta u$ simply by u_δ and call this the Littlewood-Paley projection operator at frequency δ. We will also make use of the operators $P_{\delta \varepsilon} := \sum_{\mu < \varepsilon} P_\mu$, etc. Note that the kernel form of such operators is given by $P_\mu f = \delta^\mu \varphi(\delta \cdot) * f$ and thus, for $1 \leq p \leq \infty$, we have that $P_\mu : L^p \to L^p$ for all $1 \leq p \leq 1$. Here and after, by $f \lesssim g$, we mean that there is an absolute constant C such that $f \leq Cg$. By $f \sim g$, we mean $f \lesssim g$ and $g \lesssim f$. Throughout this paper, we denote by $\| \cdot \|_{L^p(\mathbb{R}^n)}$ and $\| \cdot \|$ the norm of $L^p(\mathbb{R}^n)$ and $L^2(\mathbb{R}^n)$.

Before continuing, let us recall some basic definitions and results about attractors for evolution equations. Consider an initial value problem for an evolution equation

$$ \frac{d}{dt} u(t) = F(u(t)), \quad u(0) = u_0, $$

defined on a Hilbert space H. This problem is well-posed if there exists for every $u_0 \in H$ a unique solution $u \in C([0, +\infty), H)$ and in this case we can define the
solution semigroup \(\{S(t)\}_{t \geq 0} \) by \(S(t)u_0 = u(t) \). \(S(t) \) maps \(H \) into \(H \), satisfies the semigroup properties

\[
S(t + s) = S(t)S(s), \quad S(0) = Id
\]

and is continuous in the initial data for each \(t \geq 0 \).

\(S(t) \) is point dissipative if there is a bounded set \(B \) such that for any \(u_0 \in H, S(t)u_0 \in B \) for all sufficiently large \(t \geq 0 \). \(S(t) \) is asymptotically compact in \(H \) if \(S(t_n)u_n \) has a convergent subsequence for any bounded sequence \(u_n \) when \(t_n \to +\infty \).

\(A \subseteq H \) is called a global attractor for the evolution equation if it is compact, invariant \((S(t)A = A, \ t \geq 0)\) and attracts every bounded set \(X \) \((S(t)X \to A, \ t \to \infty)\).

It is well known that to show the existence of an attractor one has to prove that \(S(t)_{t \geq 0} \) is point dissipative and asymptotically compact. When working in infinite domain the second of these two steps is usually more difficult. We discuss next a sufficient condition for a dynamical system (evolution semigroup) to be asymptotically compact in a Sobolev space defined on an unbounded domain. This condition says roughly that for asymptotic compactness on unbounded domain it is necessary for the solutions to be uniformly small when time and space Fourier variables are large enough.

2. Proof of Riesz-Rellich Criteria for Asymptotic Compactness. Recall the following theorem due to Riesz (see Theorem XIII.66, p. 248, [21]).

Proposition 1. Let \(S \subseteq L^p(\mathbb{R}^n) \) with \(1 \leq p < \infty \). Then \(S \) is precompact in \(L^p(\mathbb{R}^n) \) if and only if the following conditions are satisfied:

1. \(S \) is bounded in \(L^p(\mathbb{R}^n) \);
2. \(f \to 0 \) in \(L^p \) sense at infinity uniformly in \(S \), i.e., for any \(\varepsilon \), there is a bounded set \(K \subseteq \mathbb{R}^n \) so that for all \(f \in S \) \(\int_{\mathbb{R}^n \setminus K} |f(x)|^p dx \leq \varepsilon^p \);
3. \(f(\cdot - y) \to f \) uniformly in \(S \) as \(y \to 0 \), i.e., for any \(\varepsilon \), there is a \(\delta \) so that \(f \in S \) and \(|y| < \delta \) imply that \(\int_{\mathbb{R}^n} |f(x - y) - f(x)|^p dx \leq \varepsilon^p \).

We note that in a bounded domain \(D \), the condition for compactness of a sequence in \(L^p(D) \) reduces to (1) and (3), since (2) is obviously satisfied.

In the special and important case \(p = 2 \) instead of checking the hard to verify condition (3) in Proposition 1 one may equivalently check that the \(L^2 \) mass of the Fourier transform on the complements of large balls tends to zero. Our next proposition shows that the uniform vanishing of the Fourier transform implies equicontinuity and is in the spirit of Theorem XIII.65 in [21].

Proposition 2. Assume \(\{f_n\}_{n=1}^{\infty} \) is bounded in \(L^2(\mathbb{R}^n) \). Then

\[
\sup_n \int_{|\xi| > M} |\hat{f}_n|^2 d\xi \to 0 \text{ as } M \to \infty
\]

implies that \(\sup_n \|f_n(\cdot + h) - f_n(\cdot)\|_{L^2} \to 0 \) as \(h \to 0 \).

Proof. Take \(\varepsilon > 0 \) and select \(M = M(\varepsilon) \) so that \(\sup_n \int_{|\xi| > M} |\hat{f}_n(\xi)|^2 d\xi \leq \varepsilon^2 \).

Choose \(\delta = \varepsilon / (M \sup_n \|f_n\|_{L^2}) \). For every \(|h| \leq \delta \), we have by the Plancherel’s
Assume that by Plancherel’s formula and Hölder’s inequality, we have
\[
\sup_n \| f_n(\cdot - h) - f_n(\cdot) \|_{L^2}^2 \leq \int |e^{2\pi ih \xi} - 1|^2 |\widehat{f_n}(\xi)|^2 d\xi \lesssim \\
\lesssim \int_{|\xi| > M} |\widehat{f_n}(\xi)|^2 d\xi + h^2 \int_{|\xi| < M} |\xi|^2 |\widehat{f_n}(\xi)|^2 d\xi \lesssim \\
\lesssim \varepsilon^2 + h^2 M^2 \sup_n \| f_n \|_{L^2}^2 \leq 2 \varepsilon^2.
\]

Consider a dynamical system \(\{ S(t) \}_{t \geq 0} \) and let \(S(t)f_n \) solves an evolution equation with initial condition \(f_n \). Suppose that \(\sup_n \| f_n \|_{H^1} < B \). Let \(t_n \to \infty \) and denote \(u_n(t_n, \cdot) = S(t_n)f_n \). We have the following criteria for asymptotic compactness.

Proposition 3. Assume that

- \(\sup_n \| u_n(t_n, \cdot) \|_{H^1} \leq C(B) \)
- \(\limsup_n \| u_n(t_n, \cdot) \|_{H^1(\{|x| > N\})} \to 0 \) as \(N \to \infty \)
- \(\limsup_n \| P_{\leq N} u_n(t_n, \cdot) \|_{H^1} \to 0 \) as \(N \to \infty \)

Then the sequence \(\{ u_n(t_n, \cdot) \} \) is precompact.

Remark: One can obviously improve the result above to \(\sup_n \| f_n \|_{L^2}^2 \leq 2 \varepsilon^2 \). Suppose that \(\sup_n \| f_n \|_{H^1} < B \). Let \(t_n \to \infty \) and denote \(u_n(t_n, \cdot) = S(t_n)f_n \). We have the following criteria for asymptotic compactness.

3. **Existence of Attractor for the Damped BBM Equation.** In order to define the dynamical system for the equation \(\mathbf{(2)} \) we need to prove global well-posedness for this equation in the space \(H^1(\mathbf{R}) \). First we need to consider the Helmholtz operator \((1 - \partial_x^2)^{-1} \) defined as the inverse of the second order differential operator \((1 - \partial_x^2) \). Alternatively, one defines it for (sufficiently) smooth functions \(f \) via \(\mathcal{F}((1 - \partial_x^2)^{-1} f)(\xi) := (1 + 4\pi^2 |\xi|^2)^{-1} \hat{f}(\xi) \). The following simple lemma is a variant of an endpoint Sobolev embedding result, which will be needed in our estimates later on.

Lemma 1. Let \(u, v \in L^2(\mathbf{R}) \). Then \(\| \partial_x (1 - \partial_x^2)^{-1}(uv) \|_{L^2(\mathbf{R})} \lesssim \| u \|_2 \| v \|_2 \).

Proof. By Plancherel’s formula and Hölder’s inequality, we have
\[
|\mathcal{F}(\partial_x (1 - \partial_x^2)^{-1}(uv))(\xi)| \lesssim \xi^{-1} \left| \int \hat{u}(\xi - \eta) \hat{v}(\eta) d\eta \right| \lesssim \xi^{-1} \| u \|_2 \| v \|_2,
\]
where \(\xi := (1 + |\xi|^2)^{1/2} \). The result follows since \(\xi^{-1} \in L^1_t(\mathbf{R}) \), the weighted \(L^2 \) space.

Remark One can obviously improve the result above to \(\| \partial_x ^s (1 - \partial_x^2)^{-1}(uv) \|_{L^2(\mathbf{R})} \lesssim \| u \|_2 \| v \|_2 \) for all \(0 \leq s < 3/2 \), where \(\mathcal{F}(\partial_x ^s f)(\xi) := |\xi|^s \hat{f}(\xi) \).

Next, we rewrite the damped Benjamin-Bona-Mahony equation in evolution form using the operator \((1 - \partial_x^2)^{-1} \).

\[
\begin{cases}
 u_t + nu + \partial_x(1 - \partial_x^2)^{-1}(u^2) = (1 - \partial_x^2)^{-1}g(x) \\
 u(0, x) = f(x).
\end{cases}
\]
Note that the classical Benjamin-Bona-Mahony equation (1) looks very similar when written in evolution form.

\[
\begin{cases}
 u_t - \nu \Delta(1 - \Delta)^{-1}u + \text{div}(1 - \Delta)^{-1}(u + \frac{1}{2}u^2) = (1 - \Delta)^{-1}g. \\
 u(0) = f(x).
\end{cases}
\]

(4)
The only difference between (3) and (4) is that the term \(\nu \Delta(1 - \Delta)^{-1}u\) is replaced with \(\nu u\). For large frequencies both terms are equivalent for obvious reasons, they only differ in low frequencies. It is exactly the accumulation of mass in low frequencies which is the main obstacle to showing the existence of attractors in dimension one for the classical Benjamin-Bona-Mahony equation. In fact in [2] there is a counterexample that shows that attractor does not exist in dimension one for the following Benjamin-Bona-Mahony equation

\[u_t - u_{xx} - u_{xxx} + u^2u_x = 0. \]

Next, we proceed to show local well-posedness for (3). Consider the equivalent integral equation:

\[u(t, x) = f(x) + \int_0^t (\nu u(s) - \partial_x(1 - \partial_x^2)^{-1}(u^2) + (1 - \partial_x^2)^{-1}g(x)) \, ds. \]

Denote by \(F(u) = \nu u - \partial_x(1 - \partial_x^2)^{-1}(u^2) + (1 - \partial_x^2)^{-1}g\) the nonlinearity. It is easy to show that \(F\) maps \(H^1(\mathbb{R})\) into itself and is locally Lipschitz continuous. More precisely, there exists a constant \(C\) such that

\[
\|F(u)\|_{H^1} \leq C\|u\|_{H^1}^2 + \nu\|u\|_{H^1} + C\|g\|_{L^2}, \quad (5)
\]

\[
\|F(u) - F(v)\|_{H^1} \leq C\|u - v\|_{H^1}(1 + \max(\|u\|_{H^1}, \|v\|_{H^1})). \quad (6)
\]

Then by the fixed point argument, we find that the equation is locally well-posed in \(H^1(\mathbb{R})\). To prove global well-posedness we need an apriori estimate for the \(\|u\|_{H^1}\).

To do this we multiply the equation by \(u\) and integrate in \(x\) to get

\[
\partial_t \int (u^2 + u_x^2) \, dx + u \int (u^2 + u_x^2) \, dx = \int g(x) \, u \, dx.
\]

Denote by \(I(t) = \int (u^2 + u_x^2) \, dx\) and estimate that

\[
\partial_t I + \nu I \leq \|g\|_{L^2} \|u\|_{L^2} \leq \|g\|_{L^2} \sqrt{I(t)}.
\]

Multiply both sides by \(e^{\nu t}\) and integrate from 0 to \(T\) to get that

\[
I(T)e^{\nu T} - I(0) \leq \sup_{0 \leq t \leq T} \|g\|_{L^2} e^{\nu t} \sup_{0 \leq t \leq T} \sqrt{I(T)}.
\]

If \(J(T) = \sup_{0 \leq t \leq T} I(t)\), then we have that

\[
J(T) \leq J(0)e^{-\nu T} + \|g\|_{L^2} \sqrt{J(T)}.
\]

Using Gronwall-type argument we see that

\[
J(T) \leq c(J(0)e^{-\nu T} + \|g\|_{L^2})
\]

and thus \(\|u\|_{H^1}\) is uniformly bounded. Thus the equation (3) is globally well-posed when \(\|g\|_{H^1} < \infty\) and \(\|f\|_{H^1} < \infty\). Moreover, the point dissipativeness follows from the estimate

\[
\lim_{t \to +\infty} \|u\|_{H^1} \leq C\|g\|_{L^2}.
\]

Next, we proceed to check the three conditions of the Riesz-Rellich criteria, namely the uniform boundedness of the orbits, the uniform smallness on the complements of large balls and the uniform continuity in \(H^1\). Uniform boundedness of the
orbits is clear from the previous argument. To show that \(\lim sup_{n} \| u_n(t_n, \cdot) \|_{H^1(|x| > N)} \rightarrow 0 \) as \(N \rightarrow \infty \) we consider a modified energy functional

\[
E_{N,n} = \int (u_n^2 + (\partial_x u_n)^2)(1 - \varphi(\frac{x}{N}))dx
\]

where the smooth cutoff function \(\varphi \in C^\infty(\mathbb{R}) \) is defined as 1 if \(|x| < 1 \) and 0 if \(|x| > 2 \). We compute

\[
E'_{N,n}(t) = 2 \int (u_n(t_n) + u_n \partial_x u_n)(1 - \varphi(\frac{x}{N}))dx =
\]

\[
= 2 \int u_n \left[-\nu u_n - \partial_x (1 - \partial_x^2)^{-1}(u_n^2) + (1 - \partial_x^2)^{-1} g \right] (1 - \varphi(\frac{x}{N}))dx +
\]

\[
+ 2 \int (u_n)_x \left[-\nu (u_n)_x - \partial_x^2 (1 - \partial_x^2)^{-1}(u_n^2) + \partial_x (1 - \partial_x^2)^{-1} g \right] (1 - \varphi(\frac{x}{N}))dx
\]

Combining terms, integrating by parts and using the identity

\[
\partial_x^2 (1 - \partial_x^2)^{-1} = (\partial_x^2 - 1)(1 - \partial_x^2)^{-1} + (1 - \partial_x^2)^{-1}
\]

we get that

\[
\partial_t E_{N,n} + 2\nu E_{N,n} = \frac{2}{N} \int u_n^2 (1 - \partial_x^2)^{-1}(u_n^2)\varphi(\frac{x}{N})dx + \frac{2}{3N} \int u_n^3 \varphi(\frac{x}{N})dx +
\]

\[
+ \frac{2}{N} \int u_n \partial_x (1 - \partial_x^2)^{-1} g (1 - \varphi(\frac{x}{N}))dx + 2 \int u_n g (1 - \varphi(\frac{x}{N}))dx
\]

Next, we estimate the terms on the right hand side.

\[
|\frac{2}{N} \int u_n (1 - \partial_x^2)^{-1} (u_n^2)\varphi(\frac{x}{N})dx| \leq \frac{2}{N} \| u_n \|_{L^2} \| (1 - \partial_x^2)^{-1}(u_n^2) \|_{L^2}
\]

\[
\leq \frac{2}{N} \| u_n \|_{L^2} \| u_n^2 \|_{L^1} \leq \frac{c}{N}.
\]

Last equality is due to the fact that the operator \((1 - \partial_x^2)^{-1}\) maps \(L^3(\mathbb{R}^1) \) into \(L^2(\mathbb{R}^1) \). Also

\[
|\frac{2}{3N} \int u_n^3 \varphi(\frac{x}{N})dx| \leq \frac{2}{3N} \| u_n^3 \|_{L^2} \leq \frac{2}{3N} \| u_n \|_{L^1}^3 \leq \frac{c}{N}.
\]

Using the boundedness of the operator \(\partial_x (1 - \partial_x^2)^{-1} \) in \(L^2 \) we estimate

\[
|\frac{2}{N} \int u \partial_x (1 - \partial_x^2)^{-1} g \varphi(\frac{x}{N})dx| \leq \frac{c}{N} \| u_n \|_{L^2} \| \partial_x (1 - \partial_x^2)^{-1} g \|_{L^2(|x| > N/2)}
\]

\[
\leq \frac{c}{N} \| u_n \|_{L^2} \| g \|_{L^2(|x| > N/2)} \leq \frac{c}{N} \| \| g \|_{L^2(|x| > N/2)}.
\]

Finally

\[
|\int u_n g (1 - \varphi(\frac{x}{N}))dx| \leq \| u_n \|_{L^2} \| g \|_{L^2(|x| > N/2)} \leq C \| g \|_{L^2(|x| > N/2)}
\]

Altogether we have

\[
\partial_t E_{N,n} + 2\nu E_{N,n} \leq \frac{c}{N} + C \| g \|_{L^2(|x| > N/2)}.
\]

Using again Gronwall type arguments we see that

\[
\lim_{N \rightarrow \infty} \lim sup_{n} \| u_n(t_n, \cdot) \|_{H^1(|x| > N)} = \lim_{N \rightarrow \infty} \lim sup_{n} E_{N,n}(t) \leq \lim_{N \rightarrow \infty} \lim sup_{n} e^{-\nu t_n} E_{N,n}(0) + \lim_{N \rightarrow \infty} \| g \|_{L^2(|x| > N/2)} = 0.
\]
The last condition that we have to check is the uniform continuity in \(H^1 \), i.e.

\[
\sup_n \| P_{>N} u_n(t_n) \|_{H^1} \to 0 \quad \text{as} \quad N \to \infty.
\]

For large \(N \) we have that \(\int |P_{>N} u_x|^2 dx \gg \int |P_{>N} u|^2 dx \). Thus, suffices to show that

\[
J_{>N}^n(t) = \int |P_{>N}(u_n)u_x|^2 dx \to 0 \quad \text{as}
\]
satisfies \(\lim_{N \to \infty} \limsup_n J_{>N}^n(t_n) = 0 \).

Again consider

\[
\partial_t J_{>N}^n(t) = 2 \int P_{>N} (u_n)x P_{>N}(u_n)x dx =
\]

\[
= 2 \int P_{>N}(u_n)x P_{>N}(-\nu_n(u_n)x - \partial_x^2(1 - \partial_x^2)^{-1}(u_n^2) - \partial_x(1 - \partial_x^2)^{-1}g)dx
\]

We obtain that

\[
\partial_t J_{>N}^n(t) + 2 \nu J_{>N}^n =
\]

\[
= 2 \int P_{>N}(u_n)x P_{>N}(\partial_x(1 - \partial_x^2)^{-1}(u_n^2))dx + 2 \int P_{>N}(u_n)x P_{>N}(\partial_x(1 - \partial_x^2)^{-1}g)dx
\]

For the second term on the right we have the easy estimate

\[
\int P_{>N}(u_n)x P_{>N}(\partial_x(1 - \partial_x^2)^{-1}g)dx
\]

\[
\leq \|P_{>N}(u_n)x\|_{L^2} \|P_{>N}(\partial_x(1 - \partial_x^2)^{-1}g)\|_{L^2}
\]

\[
\leq \sqrt{J_{>N}^n(t)} \frac{1}{N} \|g\|_{L^2} \leq \frac{c}{N}.
\]

To estimate the first term we will need the following lemma.

Lemma 2.

\[
\|P_{>N}(u^2)\|_{L^2(R^1)} \leq \frac{c}{N} \|u\|^2_{\dot{H}^1(R^1)}
\]

Using the lemma, we get

\[
\int P_{>N}(u_n)x P_{>N}(\partial_x(1 - \partial_x^2)^{-1}(u_n^2))dx \leq \|P_{>N}(u_n)x\|_{L^2} \|P_{>N}(\partial_x(1 - \partial_x^2)^{-1}(u_n^2))\|_{L^2}
\]

\[
\leq \sqrt{J_{>N}^n(t)} \|P_{>N}(u_n^2)\|_{L^2} \leq \frac{c}{N} \sqrt{J_{>N}^n(t)} \|u_n\|^2_{\dot{H}^1(R^1)} \leq \frac{c}{N}.
\]

Thus

\[
\partial_t J_{>N}^n(t) + 2 \nu J_{>N}^n(t) \leq \frac{c}{N}
\]

and as before this means that

\[
\lim_{N \to \infty} \limsup_n J_{>N}^n(t_n) = 0
\]

Note that from this computation one gets that for every \(u \) in the attractor, we have

\[
\int |P_{>N}u_x(x)|^2 dx = \limsup_n \int |P_{>N}(u_n)x(t_n, x)|^2 dx \leq CN^{-1}.
\]

It follows that \(u_x \in H^{1/2-\varepsilon} \), or \(u \in H^{3/2-\varepsilon} \) for all \(\varepsilon > 0 \).

Next, we prove Lemma 2.
We will show that \(\| P_{>N}(f g) \|_{L^2(\mathbb{R})} \leq \frac{C}{N} \| f \|_{H^s} \| g \|_{H^1} \). Furthermore, let \(N \sim 2^s \). If we establish the estimate
\[
\| (f g) | \|_{L^2} \leq C 2^{-l} \| f \|_{H^s} \| g \|_{H^1},
\]
the lemma would follow by dyadic summing \((7)\) in \(l \geq s - 2 \).

Note that since
\[
\hat{f} \hat{g}(\xi) = \hat{f} \ast \hat{g}(\xi) = \int \hat{f}(\xi - \eta) \hat{g}(\xi) d\xi,
\]
we have that \(\text{supp} \hat{f} \hat{g} \subset \text{supp} \hat{f} + \text{supp} \hat{g} \).

Next,
\[
P_l(fg) = \sum_{k,m} P_l(f_k g_m) = \sum_{k,m:|k-m|>3} P_l(f_k g_m) + \sum_{k,m:|k-m|\leq3} P_l(f_k g_m)
\]
However, if \(|k-m| > 3 \), it follows that \(|\max(k,m) - l| \leq 3 \). Indeed, if \(|\max(k,m) - l| > 3 \), we will have that \(\text{supp} f_k + \text{supp} g_m \subset \{ \xi : |\xi| < 2^{\max(k,m)} \} \), which is disjoint with \(\{ \xi : |\xi| > 2^l \} \), and therefore \(P_l(f_k g_m) = 0 \) for this configuration.

Similarly, if \(|k-m| \leq 3 \), it follows that \(\min(k,m) > l - 5 \). Therefore,
\[
P_l(fg) = \sum_{k,m:|k-m|>3 \land |\max(k,m) - l| \leq 3} P_l(f_k g_m) + \sum_{k,m:|k-m|\leq3 \land \min(k,m) > l - 5} P_l(f_k g_m).
\]
Since the expressions are symmetric in \(k,m \), let us assume without loss of generality that \(k \geq m \). Estimate the first term by Hölder’s inequality and Sobolev embedding, we obtain
\[
\sum_{k,m:|k-m|>3 \land |k-m|\leq3} \| f_k \|_{L^2} \| g_m \|_{L^\infty} \leq C (\sum_{k:|k-m|\leq3} 2^{-k} \| f \|_{H^1}) \left(\| g \|_{L^2} + \sum_{m>0} 2^{-m/2} \| g_m \|_{H^1} \right) \leq C 2^{-l} \| f \|_{H^1} \| g \|_{H^1}.
\]
The second term is estimated by
\[
\sum_{k,m:|k-m|\leq3 \land |k-m|>l-5} \| P_l(f_k g_m) \|_{L^2} \leq C \sum_{k,m:|k-m|\leq3 \land |k-m|>l-5} 2^{l/2} \| P_l(f_k g_m) \|_{L^1} \leq C \sum_{k,m:|k-m|\leq3 \land |k-m|>l-5} 2^{l/2} \| f_k \|_{L^2} \| g_m \|_{L^2} \leq C \sum_{k,m:|k-m|\leq3 \land |k-m|>l-5} 2^{l/2 - m-k} \| f \|_{H^s} \| g \|_{H^1} \leq C 2^{-3l/2} \| f \|_{H^s} \| g \|_{H^1}.
\]

\[\square\]

REFERENCES

Received September, 2004; revised April, 2005.

E-mail address: stanis@math.ku.edu