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1. Introduction

In this paper, we will be interested in the stability properties
of special solutions of a fairly general class of reaction–diffusion
and Klein–Gordon type systems. More precisely, these will feature
linearly unstable steady states, which are nevertheless physically
interesting objects. The conditional stability of such nonlinearly
unstable solutions will be our main topic here. In a recent paper
by Karageorgis and Strauss [1], the authors have shown that the
spectrally unstable ground states are indeed non-linearly unstable
as well. We will informally refer to such statements as ‘‘linear
instability⇒ nonlinear instability’’ theorems. We point out that
such statements are by no means automatic. In fact, their proofs
almost always require the construction of quite clever functionals
of the solution, which blow up if the initial data is selected close
to the unstable special solution. The blow up happens either in
finite time or at infinity, along the evolution. One of the main
examples in the paper [1] is the equation utt − ∆u = |u|5, x ∈ R3,
which is known to admit a family of steady state solutions ϕλ(x) =
(3λ2)1/4√
λ2+|x|2

, λ > 0. Using the general theorem, it is proved that these

solutions are linearly and nonlinearly unstable.
On the other hand, in another recent paper of interest, [2] by

Krieger and Schlag consider the same equation, with initial data
close to the steady state solution ϕ1, which is unstable with a
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simple unstable mode −σ 2. The authors construct a manifold Σ
such that if the perturbation toϕ1, (ψ0, ψ1) ∈ Σ , then the solution
exists globally and remains near ϕ1 for all t > 0. The tangent plane
toΣ is given by

σ

∫
Rn
ξ(x)ψo(x)dx+

∫
Rn
ξ(x)ψ1(x)dx = 0,

where ξ is the eigenvector corresponding to the unstable
eigenvalue of the linearized operator. The condition for nonlinear
instability in [1] is that σ

∫
Rn ξ(x)ψo(x)dx +

∫
Rn ξ(x)ψ1(x)dx >

0. Thus, the co-dimension one manifold Σ , constructed in [2],
separates the dispersive solutions from those that blow up in
finite time. In essence, Krieger and Schlag prove a conditional
stability result, which provides a condition for the solutions to
stay close to the steady state for all t > 0. There is in fact a
conjecture made in [2], stating that for initial data ‘‘below’’ the
stablemanifoldΣ , the solutions scatter to zero.We refer the reader
to the interesting paper [3] for numerical simulations and further
discussion in support of this phenomenon.
Inspired by these recent works (see also [29]), we were able

to prove similar conditional stability result for the radial steady
states of the Klein–Gordon equation in space dimensions 2, 3
and 4 with respect to even perturbations. In the language of
invariant manifolds, we construct an explicit co-dimension one
center-stable manifold for the Klein–Gordon equation. In the
classical paper of Bates and Jones [4], it was proved that there
exists nontrivial unstable manifold for the radial perturbations
of the radial steady state solutions of the Klein–Gordon equation
utt − ∆u + u − |u|p−1u = 0, (t, x) ∈ R1

+
× Rd if d ≥ 3, p <

d
d−2 . These finite–dimensional stable and unstablemanifolds are of
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equal dimensions and the center manifold is infinite–dimensional.
Moreover, in [5] the same authors show that the steady states
are stable with respect to radial perturbations restricted to the
center manifold which, in essence, proves the uniqueness of the
center manifold. There exist an arbitrary small neighborhoods
of the solution for which any initial data that does not lie on
the center manifold must leave that neighborhood in forward or
backward time. We want to emphasize that these positive, radial
and exponentially decaying steady state solutions do exist for p <
d+2
d−2 , when d ≥ 3 and for any p, when d = 1, 2, [6] (see [22,23,26]
as well). In our paper, we were able to prove the existence of co-
dimension one center stable manifold for the case of dimensions
2, 3 and 4 and any power in the regime d+2d−2 > p > 1 + 4

d ,
for which the steady state solutions exist, and in addition the
linearized operator H satisfies the gap condition (H4), described
below. In addition, there is an orthogonality condition which gives
the conditional stability result exactly as in the paper by Krieger
and Schlag [2]. Our techniques are closer in spirit to [2], but the
results complement those of Bates and Jones, [4]. It is of interest
to consider general perturbations for the Klein–Gordon equation
instead of even or radial ones. This case is more complicated due to
the multiplicity of the eigenvalue at zero. Our initial computations
show that, in this case, the co-dimension of the center-stable
manifold will be strictly bigger than one.
Since our goal is to prove conditional stability type results, in

essence we do not distinguish too much between the center and
center stable manifolds, both of which contribute to solutions that
do not grow exponentially in time. Similar ideas were exploited
recently in [7] to prove conditional stability of nonclassical (Lax
and undercompressive) viscous shockwaves of general quasilinear
parabolic systems of conservation laws.
In order tomake our ideas precise and to state the results, let us

outline the framework. The problems that will be considered will
be either reaction–diffusion models in the form

ut −∆u+ u−N (u) = 0 (t, x) ∈ R1
+
× Rd (1)

or Klein–Gordon type equations of the type

utt −∆u+ u−N (u) = 0 (t, x) ∈ R1
+
× Rd. (2)

We consider first the simpler reaction–diffusion case (1) as a
motivation and in order to set up the notations and the ideas in the
proof, and then proceed to formulate and prove the theorems for
the main equation of interest (2). In the next section we formulate
our assumptions and their consequences for the spectrum of the
corresponding linearized operators.

1.1. Standing assumptions

We need the following assumptions on the nonlinearity N ,
which will be assumed to hold henceforth.
(H1) The equation−∆φ + φ −N (φ) = 0 has a solution φ, which

is positive, smooth, radial and limx→±∞ ∂αx φ(x)e
a|x|
= 0 for

some a > 0 and for any α ∈ Zd.
(H2) The linearized operatorH = −∆+1−N ′(φ) has a negative

eigenvalue.
(H3) N (0) = N ′(0) = 0 and for each compact set K ⊂ Rd,

N ∈ C2+α(K) for some 0 < α ≤ 1. In particular, there exists
CK , so that for each x, x+ h ∈ K ,

|N (x+ h)−N (x)− hN ′(x)| ≤ CK |h|1+α,
|N ′(x+ h)−N ′(x)− hN ′′(x)| ≤ CK |h|1+α,

Note that (H3) implies that for every N > 0, there exists CN , so
that |N ′(s)| ≤ CN sα for all 0 < s < N .
Let us take the opportunity to review the assumptions. First,

(H1) is a natural assumption for the existence of a ground state for
(1). Simple sufficient conditions are presented in Theorem 3.1, [8].

The assumption (H3) helps to ensure that N (u) is indeed a
nonlinear term. Slightly less restrictive variants of these are all
present in Karageorgis–Strauss, [1] assumptions (A1)–(A4). The
assumption (H2) reflects our goal to study unstable configurations.
Below, we discuss two natural situations, inwhich (H2) is satisfied.
The first is when the function N is convex, which is the set

up1 in [1]. This is well-known to cause the appearance of unstable
point spectrum, as the following elementary computation shows.
Indeed, note that sinceHφ = N (φ)−N ′(φ)φ = N (φ)−N (0)−
N ′(φ)φ

〈Hφ, φ〉 =

∫
(N (φ)−N (0)−N ′(φ)φ)φdx

=

∫ (∫ 1

0
(N ′(zφ)−N ′(φ))dz

)
φ2dx.

Now, the convexity ofN implies that λ→ N ′(λ) is increasing and
since φ > 0, it follows that

∫ 1
0 (N

′(zφ)−N ′(φ))dz < 0. Thus

inf σ(H) = inf
‖χ‖=1
〈Hχ, χ〉 ≤

1
‖φ‖2
〈Hφ, φ〉 < 0. (3)

Hence σp.p.(H) ⊇ σ(H) ∩ (−∞, 0) 6= ∅.
Another situation2, where an instability occurs is when d ≥ 2

and the steady state φ is radial and decaying. Then

H(φ) = (−∆+ 1−N ′(φ))φ′(ρ) = −(d− 1)ρ−2φ′(ρ),

implying 〈H[φ′], φ′〉 < 0, whence

inf σ(H) = inf
‖χ‖=1
〈Hχ, χ〉 ≤

1
‖φ′‖2

〈H[φ′], φ′〉 < 0.

Regarding the a.c. spectrum of H , since we have lim|x|→∞N ′

(φ(x)) = 0, it follows by Weyl’s theorem [9,27] that σa.c.(H) =
σa.c.(−∆ + 1) = [1,∞). Finally, by |N ′(s)| ≤ CN sα for all
s < N , we have that the potential satisfies |N ′(φ)| ≤ Cφφα ,
whence by the exponential decay of φ (as required in (H1)),
we conclude that H has finitely many eigenvalues, an absolute
continuous spectrum (with no embedded eigenvalues) and no
other spectrum. Note also that by differentiating the identity
−∆φ+φ−N (φ) = 0, we see thatH[∂jφ] = 0, j = 1. . . . , d. That
is, {∂jφ} are linearly independent (and in fact mutually orthogonal)
eigenvectors, corresponding to the eigenvalue zero. In fact, we can
arrange so that all eigenfunctions be mutually orthogonal. Also,
without loss of generality, we assume that all (except for {∂jφ}) are
of L2 norm one. Next, we collect our conclusions.

Proposition 1. Let the nonlinearity N (u) satisfy hypotheses
(H1)–(H3). Then the linearized operatorH has the following spectrum

σ(H) = {−σ 21 , . . . ,−σ
2
M} ∪ {0} ∪ {µ

2
1, . . . , µ

2
N} ∪ [1,∞) :

σa.c.(H) = [1,∞),

where M ≥ 1, N ≥ 0 and µ2j < 1, j = 1, . . . ,N. Moreover, the
eigenvalue zero is of multiplicity at least d. The eigenfunctions {ψj}Mj=1
and {χj}Nj=1 (corresponding to the eigenvalues {−σ

2
j }
M
j=1 and {µ

2
j }
N
j=1

respectively) and {∂jφ}, corresponding to the eigenvalues at zero are
smooth, decaying at infinity and mutually orthogonal.

In other words, for all examples satisfying (H1)–(H3), the ground
state φ is linearly unstable and hence nonlinearly unstable as well,
followingKarageorgis–Strauss, [1].Moreover, theremaybe atmost
finitely many, preciselyM in our notations, unstable directions.

1 Of course, it has to be recognized that Karageorgis and Strauss are working
in a more general setting, but in spirit, the convexity of N guarantees the linear
instability.
2 We thank an anonymous referee for generously pointing out this.
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1.2. Some more spectral results

While the elementary considerations in the previous section
shed some light on the structure of the spectrum of H , we shall
need more detailed information, especially in the case of the
Klein–Gordon equation, (2).
Regarding the eigenvalue at zero, it is well-known that at least

some of its eigenvectors arise out of symmetries for the problem.
Thus, 0 is at least a multiplicity d eigenvalue, due to translation
invariance. We would like to emphasize that this problem was
studied in great detail in connection with linearizations of
Nonlinear Schrödinger equations around pulse solutions. Indeed,
our operatorH is exactly the classical operator L+, which appears
in the NLS context (see [24,25,30]). The following result is due to
Weinstein, [10] in the cases d = 1 and d = 3 and in the general
case to Kwong, [6], see also Lemma2.1 in [11] for a newand elegant
proof.

Proposition 2 ([10,6,11]). Let d ≥ 1 andN (u) = up, where

1 < p <
{
∞ d = 1, 2
(d+ 2)/(d− 2) d ≥ 3.

Then Ker(H) = {∂jφ, j = 1, . . . , d}. In general, if N satisfies
the assumptions3 of Theorem 3.1, [8], and if φ is decaying, then
Ker(H) ⊇ {∂jφ, j = 1, . . . , d}, and moreover dim(Ker(H)) = d
or dim(Ker(H)) = d+ 1.

The last statement above is a consequence of an argument in
Proposition 2.8, [10], which rules out all eigenvectors at zero (other
than ∂jφ, j = 1, . . . , d) with the possible exception of a purely
radial eigenvector.
In addition, we will need another spectral property of our

operator H , namely the so-called gap condition, which is our
hypothesis
(H4) H does not have eigenvalues in (0, 1] and the point 1 is not

a resonance.
Hypothesis (H4) was also a spectral assumptions of Schlag, [12]

(and later Beceanu, [13]) in the proof of existence of center-
stable manifolds for the pulses for the cubic focusing nonlinear
Schrödinger equation in three dimensions. Unfortunately, such a
statement is not rigorously available, to the best of our knowledge,
for any d ≥ 2 and p > 1. The case d = 1 is actually well-
understood (see for example Theorem 3.1, [11]) for all p > 1. The
conclusion there is that for p ≥ 3, the operatorH satisfies the gap
condition.
Returning to the case d = 3, there is a numerical justification of

(H4), at least for the case d = 3 and p close to 3.

Proposition 3 (Demanet–Schlag, [14]). Let d = 3, β∗ = 0.914 . . .
and 1 + 2β∗ < p ≤ 3. ThenH = −∆ + 1 − pφp−1 does not have
eigenvalues in (0, 1] and 1 is not a resonance point.

The authors, [14] claim that such a result is true for at least
some values of p bigger than 3. On the other hand, eigenvalues
start to appear in (0, 1) for p < 1 + 2β∗ as shown numerically
in [14]. Note that some further numerical simulations for the case
d = 2, 3 are available in [11], but they run only over possible
eigenvectors in the subspace of the first few harmonics. Finally, in
the case d = 2, P. Kevrekidis, [15] has recently informed us, that
a series of numerical simulations showed that the operatorH (or
L+) does not have eigenvalues in (0, 1) at least for p = 4, p = 5.

1.3. Main results

Our main result is, in essence, a fairly explicit construction of
an center–stable manifold Σ in each of the two cases mentioned

3 so that smooth, radial and decaying solutions φ exists

above. This is a conditional stability result which states that
whenever the initial data u0 satisfies u0−φ ∈ Σ , then the solution
will approach (in an exponential way or slower) a translate of the
equilibrium solution.
As pointed out in the beginning, the center stable manifold for

the Klein–Gordon equation is our main goal here, but to illustrate
the method of the proof on a simpler case, we will consider first
the reaction–diffusion equation as a model problem. In that case,
due to the spectral gap, we have exponential decay estimates for
e−tHPa.c.. Consequently, we may construct stable manifold under
very general conditions of the nonlinearityN . We believe that the
results thatweobtain,while not newper se, nevertheless shednew
light on the behavior close to the unstable steady state, even in this
simple setting. In particular, onemay extend formula (5) below for
the asymptotic phase into an asymptotic expansion in powers of ε.

1.4. Reaction–diffusion case

Theorem 1. For the Eq. (1), assume hypotheses (H1)–(H3) and 1 is
neither a resonance nor an eigenvalue of H . Fix q0 > max(2, d).
Then, there exists 0 < ε = ε � 1, C > 0 and Eh = (h1, . . . , hM) :

B(L2 ∩ Ẇ 1,q0(Rd), ε) → RM , so that whenever the initial data is in
the form

u(0) = φ + f +
M∑
j=1

hj(f )ψj : f ∈ span[ψ1, . . . , ψM ]⊥,

‖f ‖L2∩Ẇ1,q0 < ε,

then the solution u can be written as

u(t, x) = φ(x+ Ey(t))+
M∑
j=1

aj(t)ψj +
d∑
j=1

bj(t)∂jφ

+

N∑
j=1

cj(t)χj + z(t), (4)

where Ey(t) ∈ C1([0,∞)) : y(0) = 0, |y′(t)| ≤ Ce−tε, y∞ =
limt→∞ Ey(t).
Fix 0 < σ < min(σ 21 , . . . , σ

2
M , µ

2
1, . . . , µ

2
N; 1). Then, one has the

decay estimates,

sup
f :‖f ‖

L2∩Ẇ1,q0
≤ε

|h(f )| ≤ Cε1+α,

‖z(t)‖L2∩Ẇ1,q0 +
d∑
j=1

|bj(t)| +
M∑
j=1

|cj(t)| ≤ Cεe−tσ ,

|Ey(t)− y∞| ≤ Cεe−t ,
M∑
j=1

|aj(t)| ≤ Cε1+αe−tσ .

In addition,

y∞j =
1

‖∂jφ‖2
〈f , ∂jφ〉 + O(ε1+α) (5)

is an approximate formula for the asymptotic phase.
We would like to first point out that the noneignevalue/

nonresonance condition of 1 here is likely to be removable, but we
keep it for sake of simplicity of the presentation. Also, the existence
of infinite–dimensional stable manifold and finite–dimensional
unstable and center manifolds for the reaction diffusion systems
is not a new fact. In fact, it was proved in [16] using center
manifold reduction methods (see also [28] for recent and more
sophisticated results). We believe however, that Theorem 1 gives
more information than the corresponding results in [16,4].
In addition, the proof of Theorem 1 serves as an illustration of

the setup and the techniques that we will use to treat the more
subtle Klein–Gordon example.
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1.5. Klein–Gordon case

For the Klein–Gordon example (2), naturally we have more
restrictive results. This is due mainly to the power (dimension-
dependent) time decay of the semigroup generator
cos(t
√
H)Pa.c.(H) and this is especially problematic as the dimen-

sion gets smaller. In order to present the main ideas and the as-
sumptions in a more straightforward manner, we will consider
only the case of power nonlinearity in the form N (u) = |u|p−1u.
One could potentially, at the expense of some technicalities, for-
mulate and prove similar results for general nonlinearities, satis-
fying conditions similar to the ones in Theorem 1.
Another simplifying assumption, which we choose to make, is

that we consider only even initial data for (2). This may not seem
like much of a restriction, but it actually simplifies our problem a
great deal. In particular, if one considersH on the subspace of even
functions, it does not have 0 in its point spectrum and, therefore,
it prevents a dangerous build-up of mass at the zero modes of the
system. Our initial computations show that the stable manifold for
the problem with general (i.e. not necessarily even) initial data is
of co-dimension higher than one and it should in fact be d2 + 1.
The technical difficulties associated with such a theoremwould be
an order of magnitude beyond the ones that we present here. We
hope to be able to report on this problem in a future publication.
Our main result concerning (2) is the explicit construction of

a co-dimension one center stable manifold for the steady state
solutions in space dimension two, three and four. For dimension
one as well as dimensions higher than four, there are technical
complications andwe are not including these cases here.We prove
the following theorem.

Theorem 2. For (2), assumeN (u) = |u|p−1u, where

1+ 4/d ≤ p <
{
∞ d = 2
(d+ 2)/(d− 2) d = 3, 4.

Then, there is σ = σ(p), so that −σ 2 ∈ σp.p.(H) with Hψ =

−σ 2ψ .
If in addition, we further restrict p, so that the gap condition (H4)

holds. Let sd : s3 = s4 = 2, s2 = 1. Then there exists 0 < ε =
ε(k, d)� 1, C = C(d) > 0 and a function

h : BHsd (ε)× BHsd−1(ε) ∩ {(f , g) : 〈σ f + g, ψ〉 = 0} → R1

so that whenever the initial data is even and in the form∣∣∣∣u(0) = φ + f1 + h(f1, f2)ψut(0) = f2
;

〈σ f1 + f2, ψ〉 = 0; ‖(f1, f2)‖Hsd×Hsd−1 < ε,

then the solution u can be written as

u(t, x) = φ(x)+ a(t)ψ + z(t), (6)

where z = Pa.c.(H)z and
• For d = 3, 4, there exists C so that

‖z‖
L∞t [0,∞)H

2
x ∩L2t [0,∞)W

3/2−1/d,2d/(d−2)
x

≤ Cε

‖a‖L1t [0,∞)∩L∞t [0,∞) ≤ Cε.
(7)

• For d = 2, fix q0 : 2 < q0 < 8/3, and r0 : 1/q0 + 1/r0 = 1/2.
Then, there exists C so that

‖z‖
L∞t [0,∞)H

1
x ∩L

q0
t [0,∞)W

1−2/q0,r0
x

≤ Cε

‖a‖L2t [0,∞)∩L∞t [0,∞) ≤ Cε.
(8)

We take the opportunity to informally discuss the results of
Theorem 2.
• We limit our considerations to the case d ≤ 4 for reasons of
physical interest aswell as certain technical problems that arise

when the power p < 2. In other words, a similar theorem
should hold true (with the same statement) for the KG equation
in any d ≥ 5, when p ≥ 2 and modulo certain minor technical
adaptations of the argument (like Proposition 4 below), when
p < 2.
• Our smoothness assumptions on the data are not necessarily
the sharpest possible, but we wanted to use integer values of sd
to avoid some minor, but cumbersome technical issues.
• The case d = 1, on the other hand, is an important one from
a physical point of view. There are, however, more serious
technical complications here, that are essentially due to the lack
of sufficient time decay of the KG semigroup. In order to deal
with that, one needs to consider a further refinement of the
function spaces considered in the proof of Theorem 2, which
allow to close the argument in spaces with very little time
decay. This case is currently under investigation.
A few words about the organization of the paper. In Section 2,

we give the proof of Theorem 1. In Section 3, we present some
technical tools to dealwith theKGproblem.Namely,we first derive
the equations for the different components of the ansatz for the KG
equation of Theorem 2. We also present the Strichartz estimates
for the free KG equation (following [17]) and the technique of the
wave operators, which allows us to state the Strichartz estimates
(in Sobolev spaces) for the perturbed KG equation. In Section 4, we
finally present the proof of Theorem 2.

2. Proof of Theorem 1

We will be looking for a solution u in the form (4). More
precisely, we will write differential equations for the unknown
functions aj, bj, cj, j = 1, . . . , d and z(t), which we will solve
using fixed points for certain maps. We will show that these maps
do indeed have fixed points, in view of the linear estimates that
they satisfy. These will be, in turn, a consequence of the spectral
assumptions and the decay of the bound state.
Note first that the space L2 ∩ Ẇ 1,q0 ⊂ L∞(Rd) by Sobolev

embedding, since q0 > d. This implies that we will have a priori
control of the L∞x norms of all pieces of the solution and hence,
some of the constants will depend implicitly on that.

2.1. Derivation of the linearized equation

To set the ideas, write

N (φ(x+ Ey(t))+
M∑
j=1

aj(t)ψj +
d∑
j=1

bj(t)∂jφ +
N∑
j=1

cj(t)χj + z(t))

= N (φ(x+ Ey(t)))+N ′(φ(x+ Ey(t)))

(
M∑
j=1

aj(t)ψj +
d∑
j=1

bj(t)∂jφ

+

N∑
j=1

cj(t)χj + z(t)

)
+ [N (φ + G)−N (φ)−N ′(φ)G],

where

G(t, x) =
M∑
j=1

aj(t)ψj +
d∑
j=1

bj(t)∂jφ +
N∑
j=1

cj(t)χj + z(t).

Clearly, by the Hölder assumption (H3), we have the following
estimates4 for the error term
|N (φ + G)−N (φ)−N ′(φ)G| ≤ C |G|1+α,
|∇[N(φ + G)−N (φ)−N ′(φ)G]| ≤ C(|G|1+α + |∇G||G|α).
From here, an application of the Hölder’s inequality and Sobolev
embedding shows

4 Note that the constant C that appears is a consequence of (H3) and hence, it will
depend on the L∞ bounds on φ,∇φ, but also on the a priori bound for ‖G‖L∞ that
we tacitly assume.
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‖N (φ + G)−N (φ)−N ′(φ)G‖L2∩Ẇ1,q0 ≤ C‖G‖
1+α
L2∩Ẇ1,q0

.

Furthermore, again by the Hölder assumption (H3)

N ′(φ(x+ Ey(t))) = N ′(φ(x))+ O(|y(t)|).
To summarize, we have shown the representation formula

N

(
φ(x+ Ey(t))+

M∑
j=1

aj(t)ψj +
d∑
j=1

bj(t)∂jφ +
N∑
j=1

cj(t)χj + z(t)

)

= N (φ(x+ Ey(t)))+N ′(φ(x))

(
M∑
j=1

aj(t)ψj +
d∑
j=1

bj(t)∂jφ

+

N∑
j=1

cj(t)χj + z(t)

)
+ Ξ(t, x),

whereΞ is so that

‖Ξ(t, ·)‖L2∩Ẇ1,q0 ≤ C(|a(t)|
1+α
+ |b(t)|1+α + |c(t)|1+α

+‖z(t)‖1+α
L2∩Ẇ1,q0

+ C |y(t)|(|a(t)| + |b(t)| + |c(t)|

+ ‖z(t)‖L2∩Ẇ1,q0 )).

In addition,

d
dt
φ(x+ Ey(t)) =

d∑
j=1

y′j(t)∂jφ(x)+ O(|y(t)||y
′
|).

Taking into account the relations,−∆φ + φ −N (φ) = 0,
−∆ψ + ψ −N ′(φ)ψ = Hψ = −σ 2ψ
−∆∂jφ + ∂jφ −N ′(φ)∂jφ = H[∂jφ] = 0,

(9)

we find that the evolution of u is governed by the equationzt +Hz +
M∑
j=1

ψj(a′j(t)− σ
2
j aj(t))+

d∑
j=1

(y′j(t)+ b
′

j(t))∂jφ +
N∑
j=1

(c ′j (t)

+µ2j cj(t))χj + F(x, Ey(t), z(t), a(t), b1(t) . . . , bd(t)) = 0,

(10)

where F = Ξ + O(|y(t)||y′|) and thus, satisfies similar estimate
asΞ .
This is a nonlinear equation for the scalar unknowns aj(t), j =

1, . . . ,M; bj(t), j = 1, . . . , d; cj(t), j = 1, . . . ,N and the function
z(t).
Introduce the variable m(t) = (y∞, {aj(t)}Mj=1, {bj(t)}

d
j=1,

{cj(t)}Nj=1, z(t)) which lives in the space X = Rd × C([0,∞),
RM+d+N) × C([0,∞), L2x ∩ Ẇ

1,q0). At this point, we make the
assignment, yj(t) := (1 − e−t)y∞j , for the center of the traveling
wave. To summarize, F satisfies

‖F(t,m(·))‖L2∩Ẇ1,q0 ≤ C(|Ea(t)|
1+α
+ |Eb(t)|1+α + |Ec(t)|1+α

+‖z(t)‖1+α
L2∩Ẇ1,q0

+ |y∞|2e−t)+ C |y∞|(|a(t)|

+ |b(t)| + |c(t)| + ‖z(t)‖L2∩Ẇ1,q0 ). (11)

One has in fact more general Hölder’s continuity estimate in the
spirit of (11).

2.2. Setting the contraction map

In order to show the existence of these quantities for all
times, we set up the solution mapping Λ and show that it is a
contraction5. Recall that ‖ψj‖L2 = ‖χj‖L2 = 1. Taking a projection
onto ψj yields

a′j(t)− σ
2
j aj(t)+ 〈F(t), ψj〉 = 0.

5 We will follow the convention m̃ = Λ(m), that is we denote the new variables
as a tilda version of the old variables.

This gives the representation formula

e−tσ
2
j aj(t)− aj(0)+

∫ t

0
e−sσ

2
j 〈F(s), ψj〉ds = 0.

Thus, if one expects limt→∞ aj(t) = 0, we obtain

aj(0) =
∫
∞

0
e−sσ

2
〈F(s), ψj〉ds, (12)

whence going back to the formula for aj(t), we have

aj(t) =
∫
∞

t
e−(s−t)σ

2
〈F(s), ψj〉ds. (13)

Next, take a projection onto ∂jφ, whence

y′j(t)+ b
′

j(t)+ 〈F(t), ∂jφ/‖∂jφ‖
2
〉 = 0.

Integrating in time and taking t → ∞ (recall yj(0) = 0, limt→∞
bj(t) = 0) yields the formula

y∞j = bj(0)−
∫
∞

0
〈F(s), ∂jφ/‖∂jφ‖2〉ds. (14)

Since we need functions yj(t), so that yj(0) = 0, limt→∞ yj(t) =
y∞j , it is actually a good idea to assign yj(t) := (1− e

−t)y∞j . Thus,
we obtain the following formula for bj(t)

bj(t) = e−ty∞j +
∫
∞

t
〈F(s), ∂jφ/‖∂jφ‖2〉ds, (15)

where here y∞j is the dynamically defined variable in (14).
Regarding the scalar variables cj(t), they clearly have to satisfy

cj(0) = 〈f , χj〉. Then projection onto χj yields

cj(t) = e
−tµ2j 〈f , χj〉 −

∫ t

0
e(s−t)µ

2
j 〈F(m(s)), χj〉ds. (16)

Following this heuristic arguments, we build ourmapΛ as follows.
First, by (13), set

ãj(t) =
∫
∞

t
e−(s−t)σ

2
j 〈F(m(s)), ψj〉ds, (17)

where F(m(s)) is the nonlinear expression from (10). Following
(14) and (15), set

ỹ∞j =
1

‖∂jφ‖2
〈f , ∂jφ〉 −

∫
∞

0
〈F(m(s)), ∂jφ/‖∂jφ‖2〉ds. (18)

and

b̃j(t) = e−t ỹ∞j +
∫
∞

t
〈F(m(s)), ∂jφ/‖∂jφ‖2〉ds,

Finally

z̃(t) = e−tHPa.c.(H)f +
∫ t

0
e−(t−s)HPa.c.(H)F(m(s))ds. (19)

With this, we have defined m̃ = Λ[m]. We now need to show
that such a map is a contraction on an appropriate space. For the
variable m(t) = (y∞, {aj(t)}Mj=1, {bj(t)}

d
j=1, {cj(t)}

N
j=1, z(t)), which

lives in Rd×C([0,∞),RM+d+N)×C([0,∞), L2x∩Ẇ
1,q0), introduce

the quantities

M0(m) = |Ey∞|
M1(m) = sup

0≤t<∞
etσ max

1≤j≤M
|aj(t)|

M2(m) = sup
0≤t<∞

etσ max
1≤j≤d
|bj(t)|

M3(m) = sup
0≤t<∞

etσ max
1≤j≤N

|cj(t)|

M4(m) = sup
0≤t<∞

etσ‖z(t)‖L2x∩Ẇ1,q0 ,
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where 0 < σ < min(σ 21 , . . . , σ
2
M , µ

2
1, . . . , µ

2
N , 1) is some fixed

number in (0, 1).
Clearly, the expression max(M0(m), . . . ,M4(m)) is a norm on a

subset of Rd× C([0,∞),RM+d+N)× C([0,∞), L2x ∩ Ẇ
1,q0), which

we denote by X and ‖m‖X := max(M0(m), . . . ,M4(m)). Note that
this norm guarantees rate of time decay of at least e−tσ for all
functions Ea(t), Eb(t), Ec(t), ‖z(t)‖L2x∩Ẇ1,q0 .
We now show that there exists 0 < δ, ε � 1, such that

whenever ‖f ‖L2 ≤ δε, thenΛ : B(X, ε)→ B(X, ε) is a contraction.
Note first, that from (11)

‖F(m(t))‖ ≤ C‖m‖1+αX e−tσ . (20)

Then, for some constants C = Cd, we estimate in (18)

M0(m̃) = max
1≤j≤d
|ỹ∞j | ≤ max1≤j≤d

(
1
‖∂jφ‖

‖f ‖ +
1
‖∂jφ‖

∫
∞

0
‖F(m(s))‖ds

)
≤ Cδε + C‖m‖1+αX

∫
∞

0
e−tσds ≤ Cδε +

C
σ
‖m‖1+αX ≤ ε/2,

as long as δ : Cδ < 1/4 and ε : C
σ
εα < 1/4.

To estimateM1(m̃), we have

max
1≤j≤M

|ãj(t)| ≤
∫
∞

t
‖F(m(s))‖ds ≤ C‖m‖1+αX

×

∫
∞

t
e−sσds ≤

C
σ
‖m‖1+αX e−tσ ,

whence

M1(m̃) ≤ Cε1+α ≤ ε,

provided Cεα < 1. Next,

max
1≤j≤d
|b̃j(t)| ≤ e−t |ỹ∞| + max

1≤j≤d

1
‖∂jφ‖

∫
∞

t
‖F(m(s))‖ds

≤ e−tM0(m̃)+
C
σ
‖m‖1+αX e−tσ .

Thus, taking into account that we have already established
M0(m̃) ≤ ε/2, and σ < 1,

M2(m̃) = sup
0≤t<∞

etσ max
1≤j≤d
|bj(t)| ≤ M0(m̃)+

C
σ
‖m‖1+αX ≤ ε,

if C
σ
εα < 1/4.
RegardingM3(m̃), we have

max
1≤j≤N

|c̃j(t)| ≤ e−tµ
2
min‖f ‖L2 +

∫ t

0
e(s−t)µ

2
min‖F(m(s))‖ds

where µ2min := min(µ
2
1, . . . , µ

2
N) > σ . Hence,

max
1≤j≤N

|c̃j(t)| ≤ δεe−tµ
2
min + ‖m‖1+αX

∫ t

0
e(s−t)µ

2
mine−sσds

≤ δεe−tσ + C‖m‖1+αX e−tσ .

Thus

M3(x̃) ≤ ε,

so long as δ < 1/2 and Cεα < 1/2.
To finish off the argument, we need to establish an appropriate

estimate for M4(m̃). We have the following estimate from
functional calculus for the self-adjoint operatorH

‖e−tHPa.c.(H)‖L2→L2 = sup
λ∈σa.c.(H)=[1,∞)

e−tλ = e−t .

In order to establish the corresponding bounds in Sobolev spaces
(and in particular in Ẇ 1,q0 as required here), we shall need to
use the machinery of wave operators to translate various classical
estimates for the heat semigroup et∆ to estimates for e−tHPa.c.(H).

2.3. Wave operators for Schrödinger operators and consequences

We discuss the boundedness of the wave operator W ,
associated to a Schrödinger operator in the form HV = −∆ + V ,
where V is a real-valued potential. Define

W± := s− lim
t→±∞

eitHV eit∆

where the limit is understood in the strong operator topology
on B(L2(Rd)). While the L2 boundedness of W is well-understood
and relatively easy to deduce, the Lp → Lp, 1 < p < ∞ and
more generally W s,p bounds are highly nontrivial. Nevertheless,
in the last fifteen years a coherent theory of these estimates has
emerged (together with far reaching applications). We summarize
the results in the following

Lemma 1. Let V : Rd → R1, d ≥ 1 be a potential, which is
C2 and decaying with its derivatives. Assume also that the operator
HV has neither resonance nor an eigenvalue at zero6. Then, for every
s, p : 1 ≥ s ≥ 0, 1 < p < ∞, the wave operators W±,W

∗
±
are

bounded operators from W s,p to itself.

Lemma 1 is shown (under less restrictive assumptions on V ) by
Weder, [18] for d = 1, by Yajima, [19] for the case d = 2, in [20]
for d ≥ 3 and d odd and in [21], d ≥ 4 and even.
What is the the relevance of such a result to our problem? In our

case, the relevant potential V = −N ′(φ) satisfies the assumptions
of Lemma 1. Thus, one may write (see for instance formula (1.8)
in [20])

f (HV )Pa.c.(HV ) = W±f (H0)W∗± (21)

for any Borel function f . An easy computation shows that

W± = lim
t→±∞

eitHV eit∆ = lim
t→±∞

eit(−∆+1+V )e−it(−∆+1)

and hence

e−tHPa.c.(H) = W±e−t(−∆+1)W∗±.

It is easy to see now, based on the last formula

‖e−tHPa.c.(H)‖B(W s,q) = ‖W±e−t(−∆+1)W∗±‖W s,q

≤ ‖W±‖B(W s,q)‖W
∗

±
‖B(W s,q)‖e−t(−∆+1)‖B(W s,q) ≤ Cq,se−t .

Hence

‖z̃(t)‖L2∩Ẇ1,q0 ≤ ‖e
−tHPa.c.(H)f ‖L2∩Ẇ1,q0

+

∫ t

0
‖e−(t−s)HPa.c.(H)F(m(s))‖L2∩Ẇ1,q0 ds

≤ e−t‖f ‖L2∩Ẇ1,q0 + C‖m‖
1+α
X

∫ t

0
e(s−t)e−sσds ≤ e−tδε

+ Cε1+αe−tσ

and hence M4(m̃) ≤ δε + Cε1+α ≤ ε, provided δ < 1/2; Cεα <
1/2.
Thus, we have shown that the mapping Λ sends the ball

B(X, ε) into itself. Moreover, if one uses the more general Hölder
continuity estimate, rather than (11) in the arguments above, it is
easy to see that

‖Λ(m)−Λ(n)‖X ≤ C‖m− n‖X (‖m‖αx + ‖n‖
α
x ), (22)

which provides that the mappingΛ : B(X, ε)→ B(X, ε) is indeed
a contraction, whose fixed point is the desired solution. Note

6 In the case d = 1, this requirement can be dropped, see [18], but not in the case
d ≥ 3.
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that by definition the defining functionals of the stable manifold
h1, . . . , hM are (nonlinearly) defined through (see (17))

hj(f ) := aj(0) =
∫
∞

0
e−(s−t)σ

2
j 〈F(m(s)), ψj〉ds.

It follows from (20) that

|hj(f )| ≤
∫
∞

0
e−sσ

2
j ‖F(m(s))‖ds ≤ C‖m‖1+αX

×

∫
∞

0
e−sσ

2
j e−sσ(1+α)ds ≤ Cε1+α.

Regarding the approximate formula for y∞, we have from (18) that

y∞j =
1

‖∂jφ‖
2
L2
〈f , ∂jφ〉 + O(ε1+α),

since |y∞j − ‖∂jφ‖
−2
L2 〈f , ∂jφ〉| is estimated by

∫
∞

0 ‖F(m(s))‖ds ≤
Cε1+α

∫
∞

0 e
−sσds < Cε1+α .

3. Proof of Theorem 2: Preliminaries

The argument is inmanyways similar to the proof of Theorem1.
Let us mention, though, that one main difference is that by
choosing an even initial data, we are in essence destroying
the eigenvalue at zero. More precisely, since the evolution
preserves even solutions and the zero eigenvalue has only odd
eigenfunctions, the whole evolution proceeds perpendicularly to
thatmarginally stable direction and the ansatz (6) does not contain
the asymptotic phase function y(t) and

∑
j bj∂jψ .

Next, we derive the equations satisfied by the unknowns
a(t), z(t). We have by (6)

ztt +Hz + ψ(a′′(t)− σ 2a(t))− F(t, x) = 0,

F(t, x) = N (φ + a(t)ψ + z(t))−N (φ)

−N ′(φ)(a(t)ψ + z(t)) (23)

whereN (u) = |u|p−1u. From here, taking the spectral projections,
we derive the equations

a′′(t)− σ 2a(t)− 〈F(t, ·), ψ〉 = 0 (24)
ztt +Hz − Pa.c.[F ] = 0. (25)

3.1. Analysis of the a(t) equation

We have the explicit solution of (24) in the form

a(t) = cosh(σ t)a(0)+
1
σ
sinh(σ t)a′(0)

+
1
σ

∫ t

0
sinh(σ (t − s))〈F(s, ·), ψ〉ds. (26)

Our goal is to achieve a vanishing solution. The first step is to ensure
that limt→∞ a(t) = 0. There is one term in (26) that vanishes
whenever 〈F(t, ·), ψ〉 → 0. Namely, we will show

lim
t→∞

e−tσ
∫ t

0
esσ 〈F(s, ·), ψ〉ds = 0.

Indeed, we estimate as follows

e−tσ
∫ t

0
esσ |〈F(s, ·), ψ〉|ds ≤ e−tσ sup

s
|〈F(s, ·), ψ〉|

∫ t/2

0
esσds

+ e−tσ sup
s≥t/2
|〈F(s, ·), ψ〉|

∫ t

t/2
esσds.

Clearly, the last expression converges to zero, as long as limt→∞
|〈F(t, ·), ψ〉| = 0.
Wenowneed tomake sure that the remaining terms also vanish

as t →∞. We group them as follows

etσ

2

[
a(0)+

a′(0)
σ
+
1
σ

∫ t

0
e−σ s〈F(s, ·), ψ〉ds

]
.

It is now clear that in order to achieve the vanishing of these terms
as t →∞, we shall need to enforce the nonlinear relation

a(0)+
a′(0)
σ
+
1
σ

∫
∞

0
e−σ s〈F(s, ·), ψ〉ds = 0. (27)

Note that due to the exponential factor etσ in front, this is the only
hope to have a(t) → 0. On the other hand, if (27) holds, we have
by the L’Hospital’s rule,

lim
t→∞

a(0)+ a′(0)
σ
+
1
σ

∫ t
0 e
−σ s
〈F(s, ·), ψ〉ds

e−tσ

=
1
σ
lim
t→∞

e−tσ 〈F(t, ·), ψ〉
−σe−tσ

= 0,

provided 〈F(t, ·), ψ〉 → 0. In terms of the initial data we have

a(0) = 〈f1, ψ〉 + h(f1, f2); a′(0) = 〈f2, ψ〉

and taking into account 〈f1+ 1
σ
f2, ψ〉 = 0, we see that the validity

of (27) is equivalent to

h(f1, f2) = −
1
σ

∫
∞

0
e−σ s〈F(s, ·), ψ〉ds. (28)

Thus, the solution of the a equation, which obeys a(t) → 0 will
take the form

a(t) =
e−tσ

2

[
a(0)−

1
σ
a′(0)

]
−
1
2σ

∫ t

0
e−σ(t−s)〈F(s, ·), ψ〉ds

−
1
2σ

∫
∞

t
eσ(t−s)〈F(s, ·), ψ〉ds. (29)

In the derivation of the last formula, we have explicitly assumed
the validity of (27), which still needs to be enforced nonlinearly in
the evolution.

3.2. Linear estimates for the Klein–Gordon equation

Regarding the Klein–Gordon equation describing the evolution
of the z variable, we write its solution as follows

z(t) = cos(t
√

H)Pa.c.(H)[f1] +
sin(t
√

H)
√

H
Pa.c.(H)[f2]

+

∫ t

0

sin((t − s)
√

H)
√

H
Pa.c.(H)[F(s, ·)]ds, (30)

where we have taken into account Pa.c.(H)ψ = 0.
The next goal is to analyze this equation for z for small data

in appropriate function spaces. The necessary tools to do that
have been developed recently by a number of authors — in
particular we refer to the so-called Strichartz estimates. These are
readily available only for the evolution of the ‘‘free’’ Klein–Gordon
equation, i.e. generated by eit

√
H0 , where H0 := −∆ + 1. In

addition, we use the wave operators to obtain Strichartz estimates
for the perturbed evolution eit

√
H .

For the Strichartz estimates, we follow the recent paper [17] by
Nakamura and Ozawa. We do not list the full statements in [17],
as they have too many parameters. Instead, we select the value
of the parameters, which are most advantageous for our nonlinear
problem and state those explicitly. We need a definition first.
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Definition 1. We say that a pair (q, r) is KG admissible (sharp KG
admissible respectively), if q, r ≥ 2 : 2/q+ d/r ≤ d/2 (q, r ≥ 2 :
2/q+ d/r = d/2 respectively) and (q, r, d) 6= (2,∞, 2).

Lemma 2 (see Lemma 2.1 in [17] with σ = d, λ = (d + 2)/2). Let
(q, r), (q1, r1) be both KG admissible pairs and s ≥ 0. Then

‖eit
√

H0 f ‖LqtW s,rx ≤ C‖f ‖Hs+
d+2
2 ( 12−

1
r )
,∥∥∥∥∫ t

0

sin((t − τ)
√

H0)
√

H0
G(τ , ·)dτ

∥∥∥∥
LqtW

s,r
x

≤ C‖G‖
L
q′1
t W

s−1+ d+22 ( 1
r′1
−
1
r )
,r ′1

.

Based on (21) with f (ξ) = eit
√
ξ , we may now translate

Lemma 2 in terms ofH as follows.

Lemma 3. For all KG admissible pairs (q, r), (q̃, r̃), where r, r̃ < ∞
and s ≥ 0, there exists C = C(s, d), so that

‖eit
√

HPa.c.(H)f ‖LqtW s,rx ≤ C‖f ‖Hs+
d+2
2 ( 12−

1
r )
, (31)∥∥∥∥∥

∫ t

0

sin((t − τ)
√

H)
√

H
Pa.c.(HV )[G(τ , ·)]dτ

∥∥∥∥∥
LqtW

s,r
x

≤ C‖G‖
Lq̃
′

t W
s−1+ d+22 ( 1

r̃′
−
1
r ),r̃ ′

. (32)

Proof. For (31), we have

‖eit
√

HPa.c.(H)f ‖LqtW r,sx = ‖W±e
it
√
−∆+1W∗

±
f ‖LqtW r,sx

≤ ‖W±‖B(W r,sx )‖e
it
√
−∆+1W∗

±
f ‖LqtW r,sx .

Applying the Strichartz estimates for the free Klein–Gordon
(Lemma 2) yields

‖eit
√
−∆+1W∗

±
f ‖LqtW r,sx ≤ C‖W

∗

±
f ‖
H
s+ d+22

(
1
2−
1
r
)

≤ C‖W∗
±
‖
B

(
H
s+ d+22

(
1
2−
1
r
))‖f ‖

H
s+ d+22

(
1
2−
1
r
) .

Composing all the estimates above implies the statement with
a constant depending on the Strichartz constants times operator
norms of W± in various Sobolev spaces. The treatment of (32) is
similar and it is therefore omitted. �

4. Proof of Theorem 2: Main argument

We begin the proof of Theorem 2 with an elementary
proposition regarding a pointwise estimate for the non-linearity F .

Proposition 4. Let p ≥ 2 and

G(h) = |φ + h|p−1(φ + h)− φp − pφp−1h.

Then, one has the pointwise estimate

|G(h)| ≤ Cp(φp−2|h|2 + |h|p)

As a corollary, one obtains the following estimate for the nonlinearity
F = G(a(t)ψ + z(t, ·)) (as defined in (23)),

|F(t, x)| ≤ Cp(φp−2(|a(t)|2ψ2 + |z(t)|2)

+ |a(t)|pψp + |z(t)|p). (33)

Also, if p ≥ 3, one has the following estimate for the derivative

|∇G(h)| ≤ Cp(φp−3|h|2|∇φ| + |∇h||h|φp−2 + |∇h||h|p−1),

whence

|∇F(t, x)| ≤ H1(t, x)(|a(t)|2 + |a(t)|p + |z(t, x)|2 + |z(t, x)|p)

+H2(t, x)|∇z||a(t)|p−1 + |∇z||z|p−1, (34)

where Hi = Hi(φ, ψ), i = 1, 2 ∈ L1 ∩ L∞.
Proof. We only show (33), since the proof of (34) is similar. Split
into the cases |h| > φ/100 and otherwise. Split into the cases {x :
|h(x)| > φ(x)/100} and otherwise. If |h(x)| > φ(x)/100, we take
absolute values and estimate each term separately by Cp|h(x)|p. On
the other hand, if |h(x)| � φ(x), we have φ + h > 0 and hence

|(φ + h)p − φp − pφp−1h| = φp
∣∣∣∣(1+ hφ

)p
− 1− p

h
φ

∣∣∣∣
≤ Cpφp

h2

φ2
= Cpφp−2|h|2.

Combining the estimates in both cases yields the result. �

4.1. Setting the contraction map and the function spaces

We have shown that one may reduce the problem to
the following integral equation for the unknowns m(t) :=
(h, a(t), z(t)), defined by (28)–(30). That is, for a nonlinearity F =
F(m) (explicitly defined in (23)), define m̃ = Λ(m) via

h̃ = −
1
σ

∫
∞

0
e−σ s〈F(m(s)), ψ〉ds,

ã(t) =
e−tσ

2
[2〈f1, ψ〉 + h̃] −

1
2σ

∫ t

0
e−σ(t−s)〈F(m(s)), ψ〉ds

−
1
2σ

∫
∞

t
eσ(t−s)〈F(m(s)), ψ〉ds,

z̃(t) = cos(t
√

H)Pa.c.(H)[f1] +
sin(t
√

H)
√

H
Pa.c.(H)[f2]

+

∫ t

0

sin((t − s)
√

H)
√

H
Pa.c.(H)[F(m(s))]ds.

Note in the definition of ã above, we have used the formula
2〈f1, ψ〉+ h̃ instead of a(0)− a

′(0)
σ
. These two expressions coincide,

whenever h = h̃ and 〈f1 +
f2
σ
, ψ〉 = 0.

Our goal is to show that such a map is a contraction in an
appropriate metric space, which must in turn guarantee a(t)→ 0
and z(t)→ 0.
Fix q0, r0 : 2 < q0 < 8/3; 1/q0 + 1/r0 = 1/2. Introduce the

norms
M0(m) := |h|;

M1(m) :=
{
‖a‖L1t ([0,∞))∩L∞t ([0,∞)) d = 3, 4
‖a‖L2t ([0,∞))∩L∞t ([0,∞)) d = 2

M2(m) =
{
‖z‖L∞t H2x (Rd)∩L2tW3/2−1/d,2d/(d−2) d = 3, 4
‖z‖L∞t H1x (R2)∩L

q0
t W

1−2/q0,r0, d = 2.

The Banach space X is now defined as the set of all m =

(h, a(t), z(t))with a norm ‖m‖X := max(M0(m),M1(m),M2(m)).
Note that by Sobolev embedding and Gagliardo–Nirenberg’s
inequality, we have for every KG admissible pair (q, r)
‖z‖

LqtW
2−(d/2−2/q−d/r)−1/q−2/(dq),r
x

≤ M2(m). (35)

In addition, we will also use Gagliardo–Nirenberg’s inequality (or
log-convexity of Lr norms), namely forw ≥ 2,
‖a‖Lw(0,∞) ≤ M1(m).
For d = 3, 4, this follows from

‖a‖Lw(0,∞) ≤ ‖a‖
1/w
L1(0,∞)‖a‖

1−1/w
L∞(0,∞) ≤ M1(m)

and in similar way for d = 2.
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Now that we have set the stage, we proceed to show that there
exists 0 < ε = ε(d, p) � 1 and δ = δ(d, p), so that whenever
‖(f1, f2)‖H2×H1 < δε, we have that Λ : BX (ε) → BX (ε) is a
contraction.
Thus, assume that ‖m‖X ≤ ε. We have

M0(m) = |h̃| ≤
1
σ

∫
∞

0
e−σ s|〈F(m(s)), ψ〉|ds.

From (33), we estimate

|〈F(m(s)), ψ〉| ≤ C(|a(s)|2 + ‖z(s, ·)‖2
L2x

+ |a(t)|p + ‖z(s, ·)‖p
Lpx
), (36)

where C depends upon various Lw norms of the decaying functions
φ,ψ . It follows that

M0(m) ≤ C
∫
∞

0
e−σ s(|a(s)|2 + ‖z(s, ·)‖2

L2x
+ |a(t)|p + ‖z(s, ·)‖p

Lpx
)ds

≤ C(‖a‖2L2 + ‖z‖
2
L∞t L

2
x
+ ‖a‖pLp + ‖z‖

p
L∞t L

p
x
)

≤ C(M1(m)2 +M2(m)2 +M1(m)p +M2(m)p)

≤ C(ε2 + εp) ≤
ε

10
min(1, σ ),

provided C(ε + εp−1) ≤ 1/10. Here, we have used that (∞, p) is
a KG admissible pair and hence ‖z‖L∞t Lpx ≤ M2(m).

4.2. Estimating M1(m̃)

The quantityM1(m̃) has two components. Firstly, we estimate

sup
t
|ã(t)| ≤

1
2
(2|〈f1, ψ〉| + |h̃|)

+
1
2σ
sup
t

∫ t

0
e−σ(t−s)|〈F(m(s)), ψ〉|ds

+
1
2σ
sup
t

∫
∞

t
eσ(t−s)|〈F(m(s)), ψ〉|ds.

From (36) and the estimates forM0(m̃), it follows

sup
t
|ã(t)| ≤ δε +

ε

10
+
1
σ 2
sup
s
|〈F(m(s)), ψ〉|

≤ δε + ε/10+
C
σ 2
(M1(m)2 +M2(m)2

+M1(m)p +M2(m)p) ≤ ε,

provided δ < 1/2 and C(2ε + 2εp−1) ≤ σ 2/4. This takes care
of the term in M1(m̃) that contains ‖ã‖L∞ . We now need to show
estimates on the integrability of ã. This depends on the dimension.
For d = 3, 4, we have by Hausdorf–Young’s inequality

‖ã‖L1t ≤ (‖f1‖L2 + |h̃|)
∫
∞

0
e−tσdt

+
1
2σ
‖e−σ |·|‖L1‖〈F(m(s)), ψ〉‖L1s

≤
1

min(1, σ )

(
δε +

ε

10
min(1, σ )

)
+
1
2σ 2

∫
∞

0
|〈F(m(s)), ψ〉|ds.

We need to apply (33) more judiciously, in order to fit the setup
for the contraction argument. Namely, since p < 1+ 4/(d− 2) <
2d/(d− 2), we bound By Hölder’s inequality

|〈F(m(s)), ψ〉| ≤ C(|a(s)|2 + ‖z(s, ·)‖2
L2d/(d−2)x

+ |a(s)|p

+‖z(s, ·)‖p
L2d/(d−2)x

).

It follows that∫
∞

0
|〈F(m(s)), ψ〉|ds ≤ C(‖a‖2

L2t
+ ‖a‖p

Lpt
+ ‖z‖2

L2t L
2d/(d−2)
x

+‖z‖p
Lpt L
2d/(d−2)
x

).

It remains to observe that since (2, 2d/(d−2)), (p, 2d/(d−2)) are
KG admissible

‖a‖L2t , ‖a‖Lpt ≤ M1(m) ≤ ε

‖z‖
L2t L
2d/(d−2)
x

, ‖z‖
Lpt L
2d/(d−2)
x

≤ M2(m) ≤ ε.

All in all, we have shown that

‖ã‖L1t ≤
1

min(1, σ )

(
δε +

ε

10
min(1, σ )

)
+ Cσ (2ε2 + 2εp),

and hence it suffices to require δ < min(1, σ )/2 and Cσ (2ε +
2εp−1) ≤ ε/4 in order to conclude that

M1(m̃) = max(‖ã‖L∞t , ‖ã‖L1t ) ≤ ε.

For d = 2, we use the bound (33) to derive

|〈F(m(s)), ψ〉| ≤ C(|a(s)|2 + |a(s)|p + ‖z(s, ·)‖2L4 + ‖z(s, ·)‖
p
Lp),

whence

‖ã‖L2t ≤ (‖f1‖L2 + |h̃|)
(∫

∞

0
e−2tσdt

)1/2
+
1
2σ
‖e−σ |·|‖L1‖〈F(m(s)), ψ〉|‖L2s

≤
1

min(1, σ )

(
δε +

ε

10
min(1, σ )

)
+ C(‖a‖2L4

+‖a‖pL2p + ‖z‖
2
L4t L
4 + ‖z‖

p

L2pt L
p
).

Now, since (4, 4) and (2p, p) are KG admissible7,

‖a‖L4t , ‖a‖L2pt
≤ M1(m) ≤ ε

‖z‖L4t L4 , ‖z‖L2pt Lp ≤ M2(m) ≤ ε.

This implies, by requiring δ < min(1, σ )/2 and Cσ (2ε+ 2εp−1) ≤
ε/4 thatM1(m̃) ≤ ε in the case d = 2 as well.

4.3. Estimates on M2(m̃)

The estimates for z go through the Strichartz estimates of
Lemma 3, more precisely, (31) and (32).
In the case d = 3, 4, we have

‖z̃‖
L∞t H

2∩L2W3/2−1/d,2d/(d−2)x

≤ C‖ cos(t
√

H)Pa.c.f1‖L∞t H2∩L2W3/2−1/d,2d/(d−2)x

+

∥∥∥∥∥ sin(t
√

H)
√

H
Pa.c.f2

∥∥∥∥∥
L∞t H

2∩L2W3/2−1/d,2d/(d−2)x

+

∥∥∥∥∥
∫ t

0

sin((t − s)
√

H)
√

H
Pa.c.(H)

× [F(m(s))]ds

∥∥∥∥∥
L∞t H

2∩L2W3/2−1/d,2d/(d−2),x

≤ C(‖(f1, f2)‖H2(Rd)×H1(Rd) + ‖F‖L1t H1x ).

7 Here we have used p ≥ 1+ 4/d = 3 for d = 2.
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By (33) and (34), we see that

‖F‖L1t L2x + ‖∇F‖L1t L2x ≤ C(‖a‖
2
L2t
+ ‖a‖p

Lpt
+ ‖z‖2

L2t L
2d/(d−2)
x

+‖z‖p
Lpt L
2p
x
)+ C(‖a‖p−1

Lp−1t
‖∇z‖L∞L2 + ‖∇z‖L2L2d/(d−2)x

‖z‖p−1
L2(p−1)t L(p−1)dx

).

Again, our old arguments apply (recall p ≥ 2) to see that

‖a‖L2t , ‖a‖Lp−1t
, ‖a‖Lpt ≤ M1(m) ≤ ε

and

‖z‖
L2tW

1,2d/(d−2)
x

≤ M2(m) ≤ ε.

However, the norms ‖z‖Lpt L2px , ‖z‖L2(p−1)t L(p−1)dx
cannot be controlled by

M2(m), unless (p, 2p), (2(p − 1), (p − 1)d) are both KG admissible
pairs. Hence, we need to require the conditions

2
p
+
d
2p
≤
d
2

2
2(p− 1)

+
d

(p− 1)d
≤
d
2

both of which are equivalent to p ≥ 1+ 4/d. This is the only place
where this requirement appears. On the other hand, this exponent
naturally appears in the study of global solutions for Klein–Gordon
equations with small data, [17]. Clearly, since our setup is more
sophisticated than [17], it is expected that such a condition will be
necessary. Thus,

‖z‖Lpt L2px , ‖z‖L2(p−1)t L(p−1)dx
≤ M2(m),

whence

‖z̃‖
L∞t H

1∩L2W1/2−1/d,2d/(d−2)x
≤ C(δε + 2ε2 + 2εp) ≤ ε,

if Cδ ≤ 1/4, C(ε + εp−1) ≤ 1/4.
In the case d = 2, we use (32) with exponents q̃ = r̃ = 4. We

have

‖z̃‖L∞t H1x ∩L
q0
t W

r0,1−2/q0

≤ C(‖(f1, f2)‖H1(R2)×L2(R2) + ‖F‖L4/3t W1/2,4/3(R2)).

ByGagliardo–Nirenberg and the pointwise estimates (33) and (34),
we have

‖F‖L4/3t W1/2,4/3(R2) ≤ ‖F‖
1/2

L4/3t L4/3x
‖∇F‖1/2

L4/3t L4/3x

≤
1
2
(‖F‖L4/3t L4/3x

+ ‖∇F‖L4/3t L4/3x
)

≤ C(‖a‖2
L8/3t
+ ‖a‖p

L4p/3t
+ ‖z‖2

L8/3t L8
+ ‖z‖p

L4p/3t L4p/3x
)

+‖∇z‖L∞t L2x ‖a‖L4(p−1)/3 + ‖∇z‖L∞t L2x ‖z‖
p−1

L4(p−1)/3L4(p−1)x
.

Observe that the condition p ≥ 3(= 1+ 4/d) implies that 4p/3 >
4(p− 1)/3 ∈ (2,∞) and (4p/3, 4p/3), (4(p− 1)/3, 4(p− 1)) are
KG admissible pairs (in 2 spatial dimensions) and hence

‖a‖L8/3t
, ‖a‖L4p/3t

, ‖a‖L4p/3t
≤ M1(m);

‖∇z‖L∞t L2x , ‖z‖L4p/3t L4p/3x
, ‖z‖L4(p−1)/3L4(p−1)x

≤ M2(m);

All in all,

‖z̃‖L∞t H1x ∩L
q0
t W

1−2/q0,r0 ≤ C(δε + ε
2
+ εp),

whenceM2(m̃) ≤ ε, provided Cδ < 1/4, C(ε + εp−1) ≤ 1/2.
So far, we have established that Λ : BX (ε) → BX (ε) for

appropriately chosen ε and δ, so that ‖(f1, f2)‖H2×H1 ≤ δε in d = 2

and ‖(f1, f2)‖H1×L2 ≤ δε in d = 3, 4 respectively. Regarding the
contractivity of the map in the same space, it will suffice to run
the same argument with all the estimates for F(m) replaced by
appropriate estimates for F(m1) − F(m2). The situation is similar
to the proof of (22), so we omit the details.
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