MATH 800 - FINAL EXAM Practice Problems

(1) Compute

$$
\int_{-\infty}^{\infty} \frac{\cos (2 x)}{x^{4}+1} d x
$$

(2) Compute

$$
\int_{-\infty}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x
$$

(3) For which values of z, does the following series converge

$$
\sum_{n=0}^{\infty}\left(\frac{z^{n}}{n!}+\frac{n^{2}}{z^{n}}\right)
$$

(4) Let g_{n} be a sequence of entire functions, with only real zeros. Suppose that g_{n} converges uniformly on the compact subsets to a function g. Show that g has only real zeros as well.
(5) How many zeros does the polynomial

$$
3 z^{9}+8 z^{6}+z^{5}+2 z^{3}+1
$$

has in the annulus $\{z: 1<|z|<2\}$?
(6) Evaluate the integrals

$$
I_{k}=\oint_{\gamma} \frac{1}{z(z-1) \ldots(z-k)} d z, J_{k}=\oint_{\gamma} \frac{(z-1) \ldots(z-k)}{z} d z
$$

where γ is a simple closed contour containing all $0,1, \ldots, k$.
(7) Suppose that $f: D(0,1) \rightarrow \mathbb{C}$, so that f^{2} and f^{3} are analytic. Show that f is analytic as well.
(8) Compute the Laurent series at $z=0$ for the function

$$
f(z)=\frac{1}{z(z-1)(z-2)}
$$

What is the domain of convergence?
(9) Suppose f is analytic on $D(0,1)$, so that $|f(z)| \leq 1$ for $|z|=1$ and $f(\alpha)=0$. Show that

$$
|f(z)| \leq\left|\frac{z-\alpha}{1-\bar{\alpha} z}\right|
$$

