
MATH 800, Spring 2020

Daily Update:

January 22, Wednesday We began with the fundamental concepts in complex
analysis - identifying the complex numbers with pairs of real numbers equipped with
the algebraic operations of addition and multiplication and discussing various basic
properties of complex numbers, polar representation, complex exponentials, Cauchy-
Schwarz and triangle inequalities. We then spent some time working with complex
polynomials and defining the partial differential operators ∂

∂z
and ∂

∂z̄
, which are linear,

satisfy the Leibniz rule and play an important role in complex analysis.
January 24, Friday We defined holomorphic functions and proved that their

real and imaginary parts satisfy the Cauchy-Riemann equations and are harmonic
functions. We then worked on the question of the existence of a holomorphic function,
whose real part is a given harmonic function and proved the result in the case of an
open rectangle. We also discussed the existence of holomorphic antiderivative. This
concludes chapter 1 and the assigned Homework set I is due on February 5.

Week 2, January 27-31 We spent this week discussing integrals in the complex
plane setting and defined integral of a continuous function f over a smooth curve
γ(t) = γ1(t) + iγ2(t) : [a, b]→ U in an open set U as follows∫

γ

f(z)dz =

∫ b

a

f(γ(t))(γ′1(t) + iγ′2(t))dt.

In the case of a holomorphic function f : U → C we have the following
Proposition 1 ∫

γ

∂f(z)

∂z
dz = f(γ(b))− f(γ(a)).

Note that the condition that the function f is holomorphic is very important. In that
case, the particular parametrization of γ is not important. That is, for an increasing
C1 function φ and for γ̃ := γ ◦ φ, we have∫

γ

f(z)dz =

∫
γ̃

f(z)dz

Next, we defined complex differentiability for a function f : U → C at a point z0 ∈ U
by the limit

lim
z→z0

f(z)− f(z0)

z − z0

if this limit exists. We denote the limit by f ′(z0). It turns out that this is equivalent
with the function f being holomorphic. We proved the following theorem.
Theorem 1 f ∈ C1(U) is holomorphic if and only if f ′(z) exists for all z ∈ U . In
this case, f ′ = ∂f

∂z
.
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Finally, we extended the antiderivative condition as follows.
Proposition 2 Let P be a point in Ω ⊂ C, a simply connected open set. Suppose
that F is holomorphic in Ω\P and continuous on Ω. Then there existsH, holomorphic
on Ω, such that H ′(z) = F .

Week 3, February 3-7 We spent this week discussing and proving Cauchy integral
formula and Cauchy integral theorem. Denote the integral over a closed curve γ by∮
γ

and assume that the positive direction is counterclockwise. We have:

Cauchy Theorem Let Ω be simply connected domain and f is holomorphic on Ω.
Then, for any closed C1 curve γ : [0, 1]→ Ω we have∮

γ

f(z)dz = 0.

Cauchy integral formula Let Ω be a simply connected domain in C and f a
holomorphic function on it. Let γ be a C1 closed curve in Ω, which winds once around
z ∈ Ω. Then,

f(z) =
1

2πi

∮
γ

f(ξ)

ξ − z
dξ.

We started the proof of this by computing the complex integral∮
|ξ−z0|=r

1

ξ − z
= 2πi

whenever z : |z − z0| = r. We then proved the results for the special case when γ is
the boundary of a disc, and extended it to a general closed curve.

Monday, February 10 We worked on applications of Cauchy integral formula
and theorem.
Theorem Let U be an open subset of C and f a holomorphic function on U . Then
f ∈ C∞(U) and for every integer k and every curve γ around z ∈ U

f (k)(z) =
k!

2πi

∮
γ

f(ξ)

(ξ − z)k+1
dξ

As a corollary, we saw that if f is a holomorphic function on U , then f ′ is also
holomorphic on U .

The next theorem shows that the Cauchy theorem is reversible.
Theorem (Morera) Let Ω be an open connected subset of C and f continuous
function on U . Assume that for every closed C1 curve γ, we have∮

γ

f(z)dz = 0

Then f is holomorphic inside Ω. Finally, we discussed ”holomorphic extension”.
Proposition Let U be an open subset of C and f a holomorphic function on U . Let
γ be a C1 closed curve in U and φ ∈ C(γ). For z ∈ Int(γ), define

f(z) =
1

2πi

∮
γ

φ(ξ)

ξ − z
dξ

Then f is holomorphic inside γ.
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Wednesday, February 12 During this and the next class, we focused on complex
power series. We first proved Abel’s lemma, which states that if

∑∞
k=0 ak(z − P )k

converges at some z, then the series converges at each ω ∈ D(P, r), where r = |z−P |.
This allows to define the radius of convergence of a power series as

r := sup{|ω − P | :
∑

ak(ω − P )kconverges}.

We proved the root test for the radius of convergence.
Lemma (root test)
a)r = 1

lim supk→+∞|ak|1/k
if lim supk→+∞|ak|1/k > 0, or

b) +∞ if lim supk→+∞|ak|1/k = 0.
Next proposition states that inside the disc of convergence, the power series con-

verges uniformly and absolutely.
Proposition Let

∑∞
k=0 ak(z − P )k be a power series with radius of convergence

r. Then, for any number R with 0 ≤ R < r, the series converges uniformly and
absolutely on D̄(P,R).

We also proved that the series obtained by term by term differentiation of the
power series of a holomorphic function f is convergent and equal to the corresponding
derivative. Finally, we established uniqueness of the power series, i.e. if

∞∑
j=0

aj(z − P )j =
∞∑
j=0

bj(z − P )j

and both series are convergent on D(P, r), then aj = bj for every j.
Friday, February 14 A complex function is analytic if there exists a power series

f(z) =
∑∞

j=0 aj(z−P )j for all z : |z−P | < r. We proved that holomorphic functions
are analytic functions and the converse is also true.
Theorem If f is a holomorphic function on the set U ⊂ C and P ∈ U,D(P, r) ⊂ U .
Then

f(z) =
∞∑
j=0

f (j)(P )

j!
(z − P )j

for all z : |z − P | < r. The radius of convergence at each point is at lest equal to the
distance between P and ∂U .

Monday, February 17 We discussed Cauchy estimates and corollaries, including
the Liouville’s Theorem and the fundamental theorem of algebra.

Theorem Let f be a holomorphic function on an open set U ⊂ C. Let P ∈ U
and r > 0 be such that D̄(P, r) ⊂ U . Set M = supz∈D̄(P,r) |f(z)|. Then, for each
k = 1, 2, . . . we have the estimate

|f (k)(P )| ≤ Mk!

rk
.

We say that a function fC→ C is entire, if it is holomorphic on the whole C.
Theorem (Liouville) An entire bounded function is a constant.
Corollary Assume that f : C → C is an entire function and there exist a real

number C and a positive integer k such that |f(z)| ≤ |z|k for all z with |z| > 1. Then
f(z) is a polynomial of degree at most k.
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Finally, we used Liouville’s theorem to give a proof of the fundamental theorem of
algebra.

Corollary If p(z) is a holomorphic polynomial of degree k, then there are k com-
plex numbers α1, α2, . . . αk (not necessarily distinct) and a nonzero constant C such
that

p(z) = C.(z − α1).(z − α2) . . . (z − αk).

Wednesday, February 19 We studied the uniform limits of holomorphic func-
tions and proved the following theorem.

Theorem Let U be an open set in C. Let {fj} be a family of holomorphic
functions on U , which converges uniformly over the compact subsets to f . Then f is
holomorphic on U .

Thus, the set of holomorphic functions is closed under the operation uniform con-
vergence over the compact subsets. Moreover, we have the following corollary.

Corollary Let U be an open set in C. Let {fj} be a family of holomorphic
functions on U , which converges uniformly over the compact subsets to f . Then for

each positive integer k we have that {f (k)
j } converges uniformly over the compact

subsets to f (k).
Friday, February 21 We studied the zeros of a holomorphic function f and

showed that if f 6= const, then it can not have too many zeros.
Theorem Let U be an open and connected subset of C and f : U → C be holo-

morphic. Then the set of zeros Z = {z ∈ U : f(z) = 0} does not have accumulation
points inside of U unless f(z) = 0. Equivalently, if there exist a sequence {zj}∞j=1

and z0 ∈ Z such that zj → z0, then f = 0.
This does not exclude the possibility that for a non-trivial holomorphic function

there is an accumulation point z0 on ∂U . For example, the function f(z) = sin( 1
1−z )

has zeros zn = 1− 1
nπ

, which accumulate at 1 ∈ ∂D(0, 1).
We also proved a number of useful corollaries. Here are some of them.
Corollary Let f be holomorphic on an open and connected set U , such that

f|D(p,r) = 0 for some P ∈ U, r > 0. Then f = 0 on U .
Corollary Let U be an open and connected set and the functions f, g are holo-

morphic on U and such that fg = 0 on U . Then either f = 0 or g = 0 on U .
Monday and Wednesday, February 24 and 26 We started looking at functions

holomorphic in a punctured disc D(P, r)\{P}. If such a holomorphic function f has
an isolated singularity at P , then there are three distinct possibilities:

(1) f is bounded in a neighborhood of P , that is there is M > 0 and r > 0, so
that D(P, r) ⊂ U and

sup
z∈D(P,R)\{P}

≤M.

(2) limz→P |f(z)| =∞
(3) neither 1. or 2. holds. This is called an essential singularity.

We proved the following theorem about the first case, which is usually referred to
as removable singularity.
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Theorem (Riemann removable singularity) Suppose f is a holomorphic func-
tion in a punctured neighborhood of P and f is bounded in a neighborhood of P .
Then limz→P f(z) exists and the function

f̃(z) = { f(z) z 6= P
limz→P f(z) z = P

is holomorphic.
Thus the function f admits a holomorphic extension on the whole domain.
We also proved a result about the case of essential singularity.
Theorem (Casorati-Weierstrass) Let f be holomorphic in D(P, r0) \ {P} and

let P be an essential singularity for f . Then, for each r : 0 < r < r0, f(D(P, r)\{P})
is dense in C .

You can work on problems 2, 3, 5 on page 145 and 8 a) and 9 on page 146.
Wednesday and Friday, March 4th and 6th We studied the behavior and the

expansion of a function near a singular point. We introduced the notion of a Laurent
series and proved the following lemma.

Lemma Let
∑+∞

j=−∞ aj(z − P )j be a doubly infinite series that converges at one

point (at least). Then there are unique nonnegative numbers r1 and r2 such that the
series converges absolutely for all z with r1 < |z − P | < r2 and diverges for z with
|z − P | < r1 and |z − P | > r2. Also, if r1 < r′1 ≤ r′2 < r2, then

∑+∞
j=−∞ aj(z − P )j

converges absolutely and uniformly there.
Our ultimate goal is to prove that every holomorphic function on an annulus is

given by a convergent Laurent series. We will postpone this for now, but we were
able to prove the following uniqueness result.

Proposition If the Laurent series
∑+∞

j=−∞ aj(z − P )j converges on an annulus
0 ≤ r1 < r2 ≤ ∞ to a function f , then for any r satisfying r1 < r < r2, and each
j ∈ Z we have

aj =
1

2πi

∮
|ξ−P |=r

f(ξ)

(ξ − P )j+1
dξ

In particular, the aj’s are uniquely determined by f .
Monday, March 23 After a brief review of isolated singularities and the expansion

near a singular point, we will begin the discussion of how to prove the existence of
Laurent series expansions, which is done in section 4.3 in our book. The first main
result is the Cauchy integral formula for an annulus. We are using the generalized
notion of annulus as before, for 0 ≤ r1 < r2 ≤ +∞ and we assume that the function
f : D(P, r2) \ D̄(P, r1)→ C is holomorphic. Then we have:

Theorem With the above assumptions and for each s1, s2 such that
r1 < s1 < s2 < r2 and each point z ∈ D(P, s1)\ D̄(P, s1) we have the Cauchy formula

f(z) =
1

2πi

∮
|ξ−P |=s2

f(ξ)

ξ − z
dξ − 1

2πi

∮
|ξ−P |=s1

f(ξ)

ξ − z
dξ

We will go over the proof in details during class. This theorem gives almost immedi-
ately the following desired result about existence of Laurent expansion.
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Theorem With the assumptions above, there exist complex numbers aj such that

+∞∑
j=−∞

aj(z − P )j

converges on D(P, r2) \ D̄(P, r1) to f . If r1 < s1 < s2 < r2, then the series converges
absolutely and uniformly on D(P, r2) \ D̄(P, r1).

We will continue on Wednesday with the special case when f is a holomorphic
function in D(P, r) with an isolated singularity at P .

Wednesday, March 25 For today’s lecture, we will focus on the situation when
f is a holomorphic function in D(P, r) with an isolated singularity at P . In this
situation, the existence of Laurent expansion and the formula for the coefficients
remains valid, but we can discuss directly the three mutually exclusive possibilities
of (1) a removable singularity at P , (2) a pole at P and (3) an essential singularity
at P .

We will prove that (1) ⇔ aj = 0 for all j < 0, (2) ⇔ for some k > 0, aj = 0 for all
∞ < j < −k and (3) is when neither (1) nor (2) applies.

Also, if a function f has a Laurent expansion f(z) =
∑∞

j=−k aj(z − P )j for some
k > 0 and if a−k 6= 0, then f has a pole of order k at P. Moreover, in that case
(z − P )kf(z) is bounded near P , but (z − P )k−1f(z) is not.

Next, in section 4.4, we give an algorithm for calculating the coefficients of the
Laurent expansion - the coefficients are given by

aj =
1

(k + j)!
(
∂

∂z
)k+j((z − P )kf)|z=P

Finally, we work out several concrete examples of Laurent series expansions.
Monday, March 29 This week we will focus on functions with more than one

isolated singularities, i.e. holomorphic on an open set with finitely many points
removed. We require the domain U to be holomorphically simply connected,
which means that the domain U is connected, and for each holomorphic function
f : U → C there exists a holomorphic antiderivative F ′ = f . From what we learned
before, this is equivalent with the fact that for each piecewise C1 closed curve γ in
U , we have that

∮
γ
f = 0. Clearly discs, squares and C are holomorphically simply

connected domains, but for example D(0, 1) \ {0} is not since the functions f(z) = 1
z

has no holomorphic antiderivative on this set.
Our main goal is to prove the following classical residue theorem:
Theorem Suppose U is holomorphically simply connected open set in C and
{P1, P2, . . . Pn} are distinct points of U . Suppose also that f : U\{P1, P2, . . . Pn} → C
is a holomorphic function and that γ is a closed piecewise C1-curve in U\{P1, P2, . . . Pn}.
Set the residue of f at Pj to be Rj, the coefficient in front of (z−Pj)−1 in the Laurent
expansion of f about Pj. Then we have the following:∮

γ

f =
n∑
j=1

Rj(

∮
γ

1

ξ − Pj
dξ)
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Using the winding number of the curve γ about the point P notion (index of γ with
respect to P ), defined as Indγ(P ) = 1

2πi

∮
γ

1
ξ−P dξ, we can formulate the theorem

above as follows: ∮
γ

= 2πi
n∑
j=1

Resf (Pj)Indγ(Pj)

Finally, we discuss a quick and easy way to compute residues using the formula
Resf (P ) = 1

(k−1)!
( ∂
∂z

)k−1((z − P )kf(z))|z=P for a pole of order k at P .

Wednesday, April 1 Through several examples, we present a collection of tech-
niques that use the calculus of residues to compute indefinite integrals. Each example
has specifics that are important and in most cases the integrals are harder or impos-
sible to compute using regular calculus techniques.

Friday, April 3rd We will work on examples of different problems from Chapter
4 and will discuss questions and hints for the problem set in Homework 4.

Monday, April 6 We will discuss general results that allow us to count the number
of zeros for holomorphic and meromorphic functions, which are in section 5.1 of the
textbook.

Definition We say that a zero z0 of a holomorphic function f(z) is of multiplicity
k, k ∈ N, if f(z) = (z − z0)kg(z), where g is also holomorphic in a neighborhood of
z0 and g(z0) 6= 0.

We will discuss in details and prove the following argument principle for holomor-
phic functions. Assume U ⊂ C is open and f(z) is holomorphic on U . Suppose
D̄(P, r) ⊂ U is such that f|∂D(P,r) 6= 0.

Proposition If z1, z2, . . . zk are the zeros of f in the interior of the disc and let nl
be the order of the zero at zl. Then

1

2πi

∮
|ξ−P |=r

f ′(ξ)

f(ξ)
dξ = n1 + n2 + . . . nk

This principle can be extended to yield information about meromorphic functions as
follows:

Theorem (Argument principle for meromorphic functions) Assume U ⊂ C is open
and f(z) is meromorphic on U . Suppose D̄(P, r) ⊂ U is such that f|∂D(P,r) has neither
poles nor zeros. Then

1

2πi

∮
|ξ−P |=r

f ′(ξ)

f(ξ)
dξ = n1 + n2 + . . . np − (m1 +m2 + . . .mq),

where n1, n2, . . . , np are the multiplicities of the zeros z1, z2, . . . , zp and m1,m2, . . . ,mq

are the orders of the poles w1, w2, . . . wq of f in D(p, r).
Wednesday, April 8 We discussed section 5.2, which deals with the local ge-

ometry of holomorphic functions. The main subject was the classical open mapping
theorem. Functions, for which the direct image of any open set is open are called
”open mappings”.

Theorem If f is a non-constant holomorphic function on an open connected set
U , then f(U) is an open set in C.
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Friday, April 10 We discussed the solutions to several problems from Homework
set 4.

Monday, April 13 We continue with the zero counting results, this time we
want to be able to count the zeros of a holomorphic function on its whole domain of
definition. The first result is the following.

Rouche’s Theorem Suppose that f, g are holomorphic functions on an open set
U ⊂ C and that D̄(P, r) ⊂ U . Suppose that for each ξ ∈ ∂D(P, r), one has

|f(ξ)− g(ξ)| < |f(ξ)|+ |g(ξ)|

Then

1

2πi

∮
∂D(P,r)

f ′(ξ)

f(ξ)
dξ =

1

2πi

∮
∂D(P,r)

g′(ξ)

g(ξ)
dξ

This means that the number of zeros of f in D(P, r) counting multiplicities is equal
to the number of zeros of g in D(p, r) counting multiplicities.

Another useful consequence of the argument principle is the Hurwitz Theorem
about the limit of a sequence of zero-free functions.

Theorem Let U ⊂ C be a connected open set and consider a family of holomorphic
functions fj : U → C, each nowhere vanishing on U . If the sequence fj converges on
the compact subsets of U to f , then f is either identically zero or vanishes nowhere
on U .

Next, we discuss the so called maximum modulus principle and maximum modulus
theorem (section 5.4).

Theorem (The maximum modulus principle) Let f be a holomorphic func-
tion on a domain U, U ⊂ C. If there is a point P ∈ U such that |f(P )| ≥ |f(z)| for
all z ∈ U , then f is a constant.

Corollary (Maximum modulus theorem) If u is a bounded domain in C and
f is a continuous function on Ū that is holomorphic on U , then the maximum value
of |f | on Ū must occur on the boundary ∂U .

Wednesday, April 15 We present the classical estimates of holomorphic functions
on the unit disc that go by the name of Schwarz lemma and its generalizations.

Theorem (Schwarz lemma) Let f be holomorphic on the unit disc. Assume
that
1. f(z) ≤ 1, z ∈ D(0, 1)
2. f(0) = 0
Then |f(z)| ≤ |z| and |f ′(0)| ≤ 1. Moreover, if either |f(z0)| = |z0| or |f ′(0)| = 1,
then there exists α : |α| = 1 such that f(z) = αz (f is a rotation). There is also the
following generalization of this theorem.

Theorem (Schwarz-Pick) Let f be holomorphic function on the unit disc with
|f(z)| ≤ 1 for all z ∈ D(0, 1). Then for any a ∈ D(0, 1) and with b = f(a), we have
the estimate

|f ′(a)| ≤ 1− |b|2

1− |a|2
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Moreover, if f(a1) = b1 and f(a2) = b2, then

| b2 − b1

1− b̄1b2

| ≤ | a2 − a1

1− ā1a2

|

Monday, April 20 In the last few weeks we will focus on infinite series and
products and their applications, as developed in Chapters 8 and 9 in the book. We
start with the basic concepts, defining rigorously the notion of convergence of infinite
products.

Definition We say that the infinite product
∏∞

j=1(a+ aj) converges, if
1. Only finitely many aj’s are equal to −1.
2. For N0 large so that for all j > N0, we have aj 6= −1, we require that

lim
N→∞

N∏
j=N0+1

(1 + aj)

converges and the limit is not zero.
We then define the value of the convergent product as

[

N0∏
j=1

(1 + aj)] lim
N→+∞

N∏
N0+1

(1 + aj)

Note that if the infinite product
∏∞

j=1(1 + aj) converges, then limN→+∞
∏N

j=1(1 + aj)
exists and equals the value of the infinite product, but the converse is not true.

Proposition The series
∑

n |an| converges if and only if
∏∞

n=1(1 + |an|) converges.
We say that the product

∏∞
n=1(1 + an) converges absolutely if

∏∞
n=1(1 + |an|)

converges.
Theorem Absolute convergence implies convergence for products. That is, if the

product
∏∞

n=1(1 + |an|) converges, then the product
∏∞

n=1(1 + an) converges. In
particular, if

∑∞
n=1 |an| converges, then

∏∞
n=1(1 + an) converges.

Finally, we can apply these results to infinite products of holomorphic functions.
Theorem Suppose fj : U → C are holomorphic, where U ⊂ C is open and that∑∞
j=1 |fj| converges uniformly on compact sets. Then the sequence of partial products

FN(z) =
N∏
j=1

(1 + fj(z))

converges uniformly on compact sets. In particular, the limit defines a holomorphic
function F on U . This function vanishes at a point z0 ∈ U if and only if fj(z0) = −1
for some j. The multiplicity of the zero at z0 is the sum of the multiplicities of the
zeros of the functions 1 + fj at z0.

Friday, April 24 We proved a lemma and a very general theorem that lead to
the formulation and the proof of the Weierstrass factorization theorem.

Lemma For the elementary Weierstrass factors, Ep(z) = (1− z)e(z+ z2

2
+...+ zp

p
), we

have for each z : |z| ≤ 1 that |Ep(z)− 1| ≤ |z|p+1.
In other words, Ep(z) approximates 1 well.
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Using this lemma, as well as several results about infinite products, we can prove
the following.

Theorem Let {an} be a sequence of non-zero complex numbers without accumu-
lation point. Suppose that pn are integers, such that for all r > 0, there is

∞∑
n=1

(
r

|an|

)pn+1

<∞.

Then the infinite product
∞∏
n=1

Epn

(
z

an

)
converges uniformly on the compact subsets of C to an entire function F . Moreover,
the zeros of F are exactly the sequence {an}.

Corollary Let {an} be a sequence of non-zero complex numbers without accumu-
lation point. There exists an entire function f , such that f has exactly these zeros.
Assuming that 0 is a zero of order m, we can take

f(z) = zm
∞∏

n=m+1

En−1

(
z

an

)
.

Finally, we can state and prove the following Weierstrass factorization theorem.
Theorem Let the entire function f vanishes to order m at zero. Suppose {an}

are the other zeros of f , listed with their multiplicities. Then there exists an entire
function g, such that

f(z) = zmeg(z)
∞∏
n=1

En−1

(
z

an

)
Monday and Wednesday, April 27 and 29 We discussed Blaschke products

and Jensen’s formula, which are the main applications for the infinite product con-
cepts developed last week.

Proposition The Blaschke factor Ba(z) = z−a
1−āz , defined for |a| < 1 is a holomor-

phic function on a neighborhood of D̄(0, 1). Also, Ba(a) = 0, Ba(z) 6= 0 for z 6= a
and |Ba(z)| = 1 if |z| = 1.

Theorem (Jensen’s formula) Let f be a holomorphic function on a neighbor-
hood of D̄(0, r) with f(0) 6= 0, also let a1, a2, . . . , ak be the zeros of f in D̄(0, r),
counted with multiplicities. Then

log |f(0)|+
k∑
j=1

log | r
aj
| = 1

2π

∫ 2π

0

log |f(re1θ)|dθ

Jensen’s inequality follows immediately from this theorem.
Corollary With f as in the theorem above, we have the inequality

log |f(0)| ≤ 1

2π

∫ 2π

0

log |f(re1θ)|dθ

Next, we prove the following theorem.
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Theorem If f is a nonconstant bounded holomorphic function on D(0, 1) and
a1, a2, . . . are the zeros of f , counted with multiplicities, then

∞∑
j=1

(1− |aj|) <∞.

Moreover, the reverse if also trua as the next result shows.
Theorem If {aj} ⊂ D(0, 1) satisfies

∑∞
j=1(1−|aj|) <∞ and no aj = 0, then there

is a bounded holomorphic function on D(0, 1), whose zeros coincide with the {aj}.
More precisely, the infinite product

∞∏
j=1

−āj
|aj|

Baj(z)

converges uniformly on the compact subsets of D(0, 1) to a bounded holomorphic
function B(z). B(z) has zeros at precisely the aj’s, counted with multiplicities.

Definition An expression of the form

zm
∞∏
j=1

−āj
|aj|

Baj(z),

where m > 0 is an integer, is called Blaschke product.
Finally, we have the following corollary.
Corollary Suppose that f is a bounded holomorphic function on D(0, 1), vanishing

to order M ≥ 0 at 0 and that {aj} are its other zeros listed with multiplicities. Then

f(z) = zm
∞∏
j=1

−āj
|aj|

Baj(z)F (z),

where F is a bounded holomorphic function on D(0, 1), F has no zeros and

sup
z∈D(0,1)

|f(z)| = sup
z∈D(0,1)

|F (z)|.


